神经递质流建模中的突触前 bouton 3D 几何模型构建与牙科图像自动识别方法
1. 突触前 bouton 3D 几何模型构建
在神经生理学研究中,突触中的信号传导是关键课题之一。数学模型,特别是基于偏微分方程的模型,是研究神经递质流动等现象的重要手段。而偏微分方程需要一个良好的几何模型来描述其发生过程的结构。
1.1 动机
偏微分方程可反映神经递质流动的时间和空间方面,但空间方面需要精确的物理结构几何模型。对于突触前 bouton,需要创建一个描述其几何形状(包括内部细胞器)的数据结构。考虑到有限元方法(FEM)用于求解非线性微分方程的特性,bouton 和内部细胞器的表面应用三角形或四边形近似,以生成四面体网格用于数值计算。然而,创建这样的数据结构和网格并非易事,以往常使用简化的几何模型。更准确的几何描述能使模型更好地反映现象,因此构建一个强大的几何模型对建立合适的数学描述至关重要。
1.2 神经递质动力学模型
突触前 bouton 模型用于估计神经递质密度。之前已介绍了该模型的理论基础及其在简化二维情况下的应用。假设神经递质密度变化由一个包含“扩散”项和“合成”项的偏微分方程控制,并结合初始条件和边界条件。本文构建突触前 bouton 的 3D 模型,用于计算神经递质密度的空间分布和随时间的变化。该模型基于对大鼠脑 bouton 的平均建模,通过电子显微镜(EM)的超薄切片重建了突触体的物理特性,包括大小、形状和细胞器组成。同时,还量化了突触前终端的绝对蛋白质组成。
为模拟囊泡传播,FEM 方法需要突触体的四面体(或六面体)3D 模型。可采用类似之前的方法,先生成建模域边界的表面网格,再以此为输入生成体积网格。例如