37、神经递质流建模中的突触前 bouton 3D 几何模型构建与牙科图像自动识别方法

神经递质流建模中的突触前 bouton 3D 几何模型构建与牙科图像自动识别方法

1. 突触前 bouton 3D 几何模型构建

在神经生理学研究中,突触中的信号传导是关键课题之一。数学模型,特别是基于偏微分方程的模型,是研究神经递质流动等现象的重要手段。而偏微分方程需要一个良好的几何模型来描述其发生过程的结构。

1.1 动机

偏微分方程可反映神经递质流动的时间和空间方面,但空间方面需要精确的物理结构几何模型。对于突触前 bouton,需要创建一个描述其几何形状(包括内部细胞器)的数据结构。考虑到有限元方法(FEM)用于求解非线性微分方程的特性,bouton 和内部细胞器的表面应用三角形或四边形近似,以生成四面体网格用于数值计算。然而,创建这样的数据结构和网格并非易事,以往常使用简化的几何模型。更准确的几何描述能使模型更好地反映现象,因此构建一个强大的几何模型对建立合适的数学描述至关重要。

1.2 神经递质动力学模型

突触前 bouton 模型用于估计神经递质密度。之前已介绍了该模型的理论基础及其在简化二维情况下的应用。假设神经递质密度变化由一个包含“扩散”项和“合成”项的偏微分方程控制,并结合初始条件和边界条件。本文构建突触前 bouton 的 3D 模型,用于计算神经递质密度的空间分布和随时间的变化。该模型基于对大鼠脑 bouton 的平均建模,通过电子显微镜(EM)的超薄切片重建了突触体的物理特性,包括大小、形状和细胞器组成。同时,还量化了突触前终端的绝对蛋白质组成。
为模拟囊泡传播,FEM 方法需要突触体的四面体(或六面体)3D 模型。可采用类似之前的方法,先生成建模域边界的表面网格,再以此为输入生成体积网格。例如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值