自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(64)
  • 收藏
  • 关注

原创 基于YOLO训练的模型进行微调时,学习率(lr0)的设置确实需要参考之前的训练最后一轮的学习率

在基于自己训练的模型进行微调时,学习率()的设置确实需要参考之前的训练情况,尤其是最后一轮的学习率。这是因为模型已经经过了一定程度的训练,权重已经接近目标分布,此时如果直接使用较大的学习率,可能会破坏已有的知识,导致模型性能下降。以下是具体的分析和公式建议:假设:微调的初始学习率通常是上一轮学习率的一个小比例(如 1/10 或 1/100)。公式如下:lr0=lr_prev×α\text{lr0} = \text{lr\_prev} \times \alphalr0=lr_prev×α其中:如果你知

2025-07-17 12:02:27 737

原创 YOLOv8微调继续训练损失值及mAP50-95应与之前训练最后一轮值基本一致

要回答“YOLOv8微调继续训练时,损失值及mAP50-95是否应与之前最后一轮基本一致”的问题,需结合。(学习率、数据增强、batch size等),继续训练的第1轮损失和mAP应与之前最后一轮。(如损失突然上升0.1以上,mAP下降0.03以上),则可能是。(仅受数据随机性影响,如batch组成、数据加载顺序)。恢复后训练的第1轮,如总轮次的第301轮),(如学习率突然翻倍)导致的异常。(如优化器状态未正确加载)或。即使完全恢复参数和状态,(优化器、学习率等)和。若继续训练的初始轮次。

2025-07-17 11:56:34 478

原创 优化YOLOv8模型的微调训练效果

减少梯度波动,提高训练稳定性,缩小训练/验证损失差距。:减少模型对训练数据的过度拟合,提升验证集泛化能力。:使用更适合微调的优化器,提高学习率的自适应能力。(训练/验证损失差距、后期指标平稳),从。(如小批量、固定学习率、弱数据增强)和。以上调参建议基于YOLOv8的。,适应微调需求,避免过拟合。:增加数据多样性,让模型适应。等核心问题,逐步提升模型的。要优化YOLOv8模型的。

2025-07-17 11:53:57 721

原创 yolov8模型微调时为何选择last.pt而非best.pt

(150轮)是更好的选择,因为它避免了后期过拟合的影响。但从用户的曲线来看,(如余弦退火的当前学习率)。(150轮0.58→200轮0.60),说明模型在。(200轮的结果)来看,last.pt。(如AdamW的动量、自适应学习率)和。用户的曲线显示,mAP50-95(B)(如验证集损失在150轮后持续上升,结合用户的曲线,last.pt。(150轮后保持稳定),说明。≈0.78)与训练集损失(用户的验证集关键指标(如。要回答“微调时为何选择。若用户的训练曲线显示。

2025-07-16 09:55:27 618

原创 Windows 7 环境下发布Python程序的 _socket 模块加载错误

目标系统是 Windows 7报错:Traceback (most recent call last):pyi_rthookinitImportError: DLL load failed while importing _socket: 参数错误。针对 Windows 7 环境下的_socket模块加载错误,我们需要专门的解决方案。

2025-07-07 18:31:26 434

原创 YOLOv8增量训练

冻结基础特征 + 针对性调整高级语义层操作要点50~200张新场景标注样本降低学习率(lr≤0.001)冻结Backbone浅层启用数据增强与早停效果:可将新场景适配成本降低80%,训练时间缩短至10分钟内(Tesla T4 GPU)

2025-06-25 08:51:17 760 1

原创 yolov8数据集缓解样本短缺与类别不均衡【数据增强、过采样、损失加权】

若需更精准控制(仅增强nohelmet),可通过# 1. 读取数据集配置# 2. 自定义增强函数(仅对nohelmet样本增强)# 筛选nohelmet的标注(假设nohelmet是类别1)OneOf([ # 随机选一种增强HorizontalFlip(p=1.0), # 水平翻转ShiftScaleRotate(shift_limit=0.2, scale_limit=0.3, rotate_limit=30, p=1.0), # 平移+缩放+旋转。

2025-06-20 18:42:01 413

原创 yolov8训练结果分析,参数的作用,每个参数与其它参数的关系,以及每个参数值的趋势意义

深度理解每个参数的含义、它们之间的动态关系以及数值变化趋势所代表的模型状态,是进行有效调参(学习率、权重、衰减策略)、诊断问题(过拟合、欠拟合、定位/分类瓶颈)和选择优化方向(数据增强、正则化、模型结构)的基础。理解这些参数是优化模型的关键,因为它们提供了模型在训练过程中学习状态和性能的实时反馈。: 验证集上 IoU 阈值为 0.5 时的平均精度均值(mean Average Precision)。: 训练集上的分类损失(通常是二元交叉熵 BCE Loss 或多类别交叉熵 CE Loss)。

2025-06-20 17:34:39 760

原创 yolov8自训练模型作为预训练权重【增加新类别】新增类别的数据集与旧数据集合并重新训练模型

在 YOLOv8(或大多数深度学习目标检测模型)中,当你需要。这是增量学习的标准做法,可以有效利用已有知识并避免遗忘。

2025-06-13 11:16:17 521

原创 yolov8自训练模型作为预训练权重【增加新类别】注意事项

在类别数量增加的情况下继续训练是可以的,但需要特别注意处理方式。

2025-06-06 18:09:16 813

原创 Yolov8骑电动车未戴头盔检测

包含行人、骑自行车人、骑电动车人的混合场景图片,恰恰是极佳的负样本素材,但需采用 「分层标注策略」 确保模型正确学习。以下是具体操作指南:禁止整图标记为负样本负样本的"不触发"规则空间关系显式化通过同一张图内同时存在 正样本(电动车骑手) 和 负样本(行人、自行车骑手),模型被迫学习以下区分能力:当模型检测到一个目标时,按顺序验证:🌰 实际案例说明场景:路口监测画面(含行人、自行车、电动车并行)总结:混合场景图片必须作为训练集的重要组成部分(建议≥30%),但需严格遵守:

2025-06-03 14:49:46 372

原创 yCharm 中将 PyQt5 程序打包成 .exe可执行文件

在 PyCharm 中将 PyQt5 程序打包成.exe可执行文件,推荐使用(最常用)或。

2025-05-20 11:30:02 1020

原创 yolov8非机动车未戴头盔模型漏检优化

建议优先采取小目标增强策略,同时结合动态卷积和注意力机制应对复杂背景干扰。实际部署时可使用TensorRT加速,确保在Jetson边缘设备上达到>25 FPS的实时性要求。非机动车(如电动自行车)驾驶员头盔的像素占比通常较小(尤其是中远距离监控摄像头下)。,但具体需结合实际场景数据分布判断优先级。,但根据实际数据统计,

2025-05-20 11:01:33 535

原创 yolo模型优化【上下文标注】

通过以上方案,可确保人脸检测框精确聚焦目标区域(误差 <5px),同时利用上下文信息实现误检率下降 90%。

2025-05-19 16:40:52 658

原创 yolov8训练模型优化模型【误检】

通过上述方法,某团队在 KITTI 数据集上将电动车人脸误检率从 12.3% 降至 3.8%。建议优先实施数据清洗与多任务学习,再逐步引入注意力机制和追踪算法,最终构建高精度检测系统。

2025-05-19 16:21:56 642

原创 报错ImportError: DLL load failed while importing onnxruntime_pybind11_state: 找不到指定的程序

此错误常见于 ONNX Runtime 版本与当前 Python 环境或操作系统不兼容。若使用 GPU 版 ONNX Runtime,需确保 CUDA 版本匹配(如。的版本兼容性或系统环境配置问题。若仍报错,建议提供完整的 Python 版本、操作系统及。需 CUDA 11.4)。根据你的错误信息,出现。输出以供进一步排查。

2025-05-14 18:04:01 2731

原创 针对已训练好的YOLOv8模型的优化策略

通过上述方法组合应用(如结构调整+损失优化+数据增强),模型[email protected]可提升5%~15%。需根据具体场景需求(精度/速度/资源限制)选择适配策略。

2025-05-14 16:14:22 1425

原创 Yolov8数据增强配置

通过上述配置与优化策略,可显著提升YOLOv8在复杂场景下的检测性能。建议优先调整数据增强参数,再逐步优化模型结构与训练策略。使用TensorBoard监控损失曲线,对比不同参数组合的验证集mAP和推理速度。减少30%显存占用,同时提升15%训练速度。自动适配显存容量,配合。

2025-05-12 17:57:52 1120

原创 分批次加载大数据集并分阶段训练 YOLOv5 模型

将 20 万张图片和标签文件分割为 4 个子集(每个 5 万张),保持类别分布平衡。每个阶段结束后,检查验证集 mAP,选择最佳权重(依次在每个子集上训练模型,并继承前一阶段的权重。监控显存和内存使用,必要时减少。目录),确保评估指标可比性。在后续阶段可降低学习率(如。所有阶段使用相同的验证集(),避免破坏已有特征。

2025-04-28 10:37:25 486

原创 删除非今天日期文件夹--批处理脚本

echo 删除过程中发生错误,请查看日志:%log_file% >> “%log_file%”REM ----- 获取当前日期(兼容低版本PowerShell) ----->> “%log_file%”REM ----- 直接执行删除操作(无确认提示) -----echo 正在删除以下文件夹: >> “%log_file%”REM ----- 目标目录存在性检查 -----REM ----- 管理员权限检查 -----REM ----- 配置部分 -----REM ----- 结果反馈 -----

2025-04-24 13:48:28 206

原创 yolov5恢复训练注意以下参数的调整

【代码】yolov5恢复训练注意以下参数的调整。

2025-04-24 08:59:51 222

原创 深度学习OCR

深度学习OCR(光学字符识别)技术近年来发展迅速,尤其在车牌识别、文档扫描、场景文本识别等领域广泛应用。

2025-04-10 08:26:09 771

原创 车牌识别技术栈框架

车牌识别(License Plate Recognition, LPR)系统的框架选择需综合考虑。自定义方案(灵活性强)。若需商业化部署,可直接采购海康/大华的硬件集成方案。字符识别-CRNN/TrOCR。选择框架时,建议优先测试。车辆检测-YOLOv8。车牌定位-DBNet。(平衡精度与速度)或。

2025-04-10 08:24:48 734

原创 yolov8与OCR结合使用

在车牌识别(LPR)或通用文本识别场景中,通常与以下结合使用,具体选择需权衡和。

2025-04-10 08:23:23 1339

原创 测速仪和高速卡口相机使用方案

避免使用学术导向模型(如TrOCR)或轻量级OCR(EasyOCR),它们在极端场景下的稳定性不足。检测速度:YOLOv8-nano(TensorRT)→ 2ms/帧(1080p图像)。YOLOv8(检测) + PaddleOCR(识别) + TensorRT(部署)车辆/车牌检测 YOLOv8(定制训练) 高召回率,支持小目标检测(远距离抓拍)OCR速度:PaddleOCR PP-OCRv4(INT8)→ 8ms/车牌。端到端延迟:≤15ms(GPU) / ≤30ms(Jetson Orin)。

2025-04-09 23:26:13 761

原创 .NET Framework 4.0/4.5 中处理 multipart/form-data 数据(适用于 ASP.NET Web API 2 或 MVC 5)

在 .NET Framework 4.0/4.5 中处理。

2025-04-09 10:19:54 283

原创 YOLOv8+PaddleOCR 部署至移动端或者嵌入式设备

将YOLOv8目标检测模型与PaddleOCR文字识别模型结合部署至移动端或嵌入式设备,需经过模型转换、优化及框架适配等关键步骤。

2025-04-08 15:05:33 1028

原创 OCR与大模型技术的开源工具库

【代码】OCR与大模型技术的开源工具库。

2025-04-08 11:17:26 375

原创 高性能OCR推荐

注:实际应用中建议先用YOLOv8定位车牌,再通过仿射变换校正倾斜,最后输入OCR模型,可提升5-10%的识别率。

2025-04-08 11:15:01 707

原创 解析划分CCPD数据集转换YOLO格式标签

根据CCPD数据集的特点和YOLO格式要求,以下Python脚本实现了以下功能:1. 解析CCPD文件名中的边界框坐标2. 自动分割训练/验证/测试集3. 生成YOLO格式标签文件4. 创建标准YOLO数据集目录结构关键功能说明 :文件名解析坐标转换原理数据集划分策略准备数据运行脚本验证结果确认每个txt文件内容格式:扩展建议 :多类别处理:如果需要同时检测车牌和字符,需修改文件名解析逻辑,并添加多类别支持数据增强:结合YOLO官方推荐的库进行数据增强YAML配置

2025-04-08 10:11:02 683

原创 机器学习中训练集、验证集和测试集的划分比例

在机器学习中,训练集、验证集和测试集的划分比例需根据数据规模、任务需求和评估方法灵活调整。

2025-04-08 10:08:17 2459

原创 如何提高学习效率:基于脑科学与工程思维的终极指南

通过上述系统化改造,可将单位时间学习产出提升3-5倍。建议从「脉冲式注意力训练」与「Anki间隔重复」入手,逐步叠加其他模块,最终构建个性化认知增强体系。提高学习效率并非单纯堆砌时间,而是通过神经可塑性原理与系统化工程思维,对学习流程进行「认知重构」。

2025-03-31 17:30:42 742

原创 马斯克解决问题的方法论

抛弃传统经验与行业惯例,从物理定律和基本事实出发重新建模。:从终极目标倒推必须实现的技术节点,无视“不可能”。掌握这套方法论,你也能以“十倍思维”挑战不可能。:用物理学公式量化效率极限,挑战传统工程边界。:通过高频次实验逼近最优解,容忍阶段性失败。:打破学科壁垒,将A领域技术嫁接至B领域。:用顶尖人才密度对冲复杂性,缩短决策链路。

2025-03-31 16:34:23 443

原创 C# winform程序实时高性能传输图片数据技术方案及实例代码

该方案在常规开发机上实测可稳定处理500+ QPS,通过调整并发参数可适应不同性能需求场景。确保文件可读后再加入队列,避免处理正在写入的文件。带指数退避的重试策略,可配置最大重试次数。使用非阻塞方式更新界面,避免界面卡顿。

2025-03-28 18:18:28 335

原创 结合C#技术栈--大规模Modbus设备通信的高性能、高实时性需求技术方案

该方案10,000+设备场景,平均响应时间≤50ms,丢包率<0.1%。

2025-03-26 11:57:44 915

原创 高性能C#定时删除图片,包含定时触发、分批删除、异步处理和资源监控

根据之前的优化分析,以下提供完整的高性能C#实现代码,包含定时触发、分批删除、异步处理和资源监控等功能:关键优化说明:流式文件枚举使用替代,实现按需加载文件路径,避免一次性加载大量路径导致内存峰值。分批次并行处理异步定时器机制资源监控保护空目录删除优化性能监控建议:监控观察处理速度检查处理失败记录使用性能计数器监控:磁盘队列长度(理想值 < 2)内存工作集大小CPU利用率(建议保持70%以下)该方案在测试环境中可稳定处理10万+文件,内存占用控制在50MB以内,建议根据实

2025-03-25 14:23:18 563

原创 卷积神经网络Batch Normalization的作用

就像给神经网络的每一层安装了一个智能稳定器,让数据分布可控、训练路线更直、模型更健壮,最终实现“训练快、调参易、性能稳”的三重效果。

2025-03-21 10:40:26 405

原创 卷积神经网络梯度消失与梯度爆炸的通俗解释

梯度消失:反向传播时,梯度像被层层“消音”,深层参数无法更新。梯度爆炸:梯度像被层层“扩音”,参数更新失控,模型崩溃。关键因素:激活函数、权重初始化、网络深度共同决定了这场“传话游戏”的结局。

2025-03-21 10:38:43 289

原创 PyTorch中torch.nn、torchsummary和torch.nn.functional库作用详解

库名主要用途特点torch.nn构建和管理神经网络结构封装可学习参数,模块化设计,支持复杂模型实现无状态操作(激活、损失等)灵活、无需实例化类,适合动态计算可视化模型结构和参数统计调试维度匹配,优化模型设计参考资料torch.nn官方文档、使用案例安装与使用指南functional与nn对比分析。

2025-03-12 17:05:20 421

原创 PyTorch中前身传播forward方法调用逻辑

通过这种方式,PyTorch实现了神经网络前向传播的自动化管理,同时确保了框架核心功能(如梯度计算、钩子等)的正常运行。,而是通过调用模型实例本身来隐式触发。在PyTorch中,当通过模型实例传递输入数据时,会自动调用。方法是神经网络模型的核心逻辑,但。的模型会自动注册所有子模块(如。是经过所有层处理后的张量。虽然技术上可以直接调用。在PyTorch中,

2025-03-12 14:46:22 587

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除