语音识别

本文介绍了原始语音信号处理的基本步骤,包括A/D转换、预加重、加窗处理及特征提取过程。预加重用于提升高频成分,加窗后的信号通过离散傅立叶变换和梅尔滤波器组提取倒谱特征,并计算信号能量,最终形成动态特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:http://www.voidcn.com/blog/joey_su/article/p-2513632.html


原始语音信号经过A/D转换得到数字信号,经过预加重提升高频成分,接着是加窗,对加窗后的信号进行两个方面的处理,一个方面是提取倒谱特征,即经过离散傅立叶变换后,对频谱幅度进行平方,通过梅尔滤波器组,再进行对数变换,最后进行离散傅立叶变换的逆运算得到倒谱特征;另一方面是求加窗后信号的能量,将这两个方面结合起来形成动态特征,最后再进行特征变换得到声学模型。

预加重:语音是由声门激励通过系统(声道等)产生的,声门激励属于低频,所以语音的能量主要集中在低频,相对于低频来说,高频的能量较低,提升高频分量有助于提高信噪比,可采用预加重的方法,这种方法在通信系统中经常使用。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值