打破传统授信模型:基于深度神经网络 DNN模型的精确额度计算方法
深度神经网络(Deep Neural Network, DNN),该模型通过 Keras 和 TensorFlow 构建,包含多个全连接层(Dense Layer)和 Dropout 层,以此来减少过拟合。具体的网络结构如下:
模型结构概览
输入层:接收输入特征的数据。输入层的节点数与特征数量一致,这里是 4 个特征(income、debt、credit_history、age)。
隐藏层:
第 1 层:128 个神经元,激活函数为 ReLU(Rectified Linear Unit)。
第 2 层:64 个神经元,激活函数为 ReLU。
第 3 层:32 个神经元,激活函数为 ReLU。
每层后面都有一个 Dropout 层,用于减少过拟合,设置的 dropout 比例为 20%(即保留 80% 的神经元,丢弃 20%)。
输出层:最终的输出是单个数值,代表预测的贷款额度,因此只有一个神经元,且没有激活函数(直接输出回归值)。
我们将使用 Keras 和 TensorFlow 来构建和训练模型,涉及的数据处理步骤包括:
数据预处理
特征工程
深度神经网络模型的构建
模型训练和调参
模型评估
最终的额度计算
深度学习模型实现代码
1. 导入必要的库
python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
import seaborn as sns
2. 加载数据
假设我们的数据集包含一些基本的客户信息,包括收入、负债、信用历史等。
python
# 模拟加载数据(在实际使用中,数据通常来自CSV、数据库等)
data = pd.read_csv('customer_data.csv')
# 查看数据概况
print(data.head())
假设数据集包含以下字段:
income: 年收入(万元)
debt: 当前负债(万元)
credit_history: 信用历史(0表示无不良记录,1表示有不良记录)
age: 年龄
loan_amount: 贷款额度(目标变量)
3. 数据预处理
进行缺失值处理、异常值处理和数据标准化。
python
# 检查缺失值
print(data.isnull().sum())
# 填充缺失值
data.fillna(data.mean(), inplace=True)
# 异常值处理(使用Z-score剔除异常值)
from scipy import stats
z_scores = np.abs(stats.zscore(data.select_dtypes(include=[np.number])))
data_no_outliers = data[(z_scores < 3).all(axis=1)]
# 查看处理后的数据
print(data_no_outliers.describe())
# 标准化特征
features = ['income', 'debt', 'credit_history', 'age']
X = data_no_outliers[features]
y = data_no_outliers