
机器学习
文章平均质量分 85
机器学习是人工智能的一个分支,旨在通过算法使计算机从数据中自动学习并做出预测或决策,无需显式编程。它包括监督学习、无监督学习和强化学习等方法,广泛应用于图像识别、自然语言处理、金融风控等领域。机器学习通过分析数据中的模式与规律,帮助系统提高决策精度和效率。随着数据量和计算能力的增加,机器学习在各行业
搞技术的妹子
支付宝风控专家
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
XGBoost算法调参方法和注意事项:实战案例解析
XGBoost 是一种基于决策树的集成算法,它使用梯度提升(Gradient Boosting)的思想,将多个弱学习器(决策树)组合成一个强学习器。XGBoost 在提高模型精度的同时,提供了多种优化功能,如正则化、剪枝、并行计算等。XGBoost的核心优势:高效性:XGBoost 通过列抽样和并行计算等技术大大提高了训练效率。准确性:通过梯度提升方法,XGBoost 可以非常有效地减少误差并提高准确性。灵活性:支持回归、分类、排序等任务,且能够处理稀疏数据。python。原创 2024-11-10 23:35:54 · 1765 阅读 · 0 评论 -
【费用流模型Cost Flow Model-怎么预测最优的成本方案】-图论
通过绘制费用流转路径,企业可以清楚地了解哪些环节的费用较高,哪些环节则是费用的主要来源。费用流模型通过对各个部门和业务环节的费用进行可视化呈现,财务管理层能够快速识别出关键的费用来源。通过动态更新费用流转数据,管理者可以随时掌握各部门的费用消耗情况,快速发现异常并进行调整,避免不必要的费用超支。费用流模型通过图形化的方式将企业的费用流动透明化,帮助管理者全面了解企业各个环节的成本结构。如果你希望你的企业能够优化成本控制、提高决策效率,不妨考虑构建一个适合自己需求的费用流模型,它将为你的企业带来长远的收益。原创 2024-11-12 16:17:18 · 568 阅读 · 0 评论 -
模型训练耗时最多的部分特征工程方法总结:从数据到知识的转化
特征工程是机器学习过程中最关键的部分之一。它指的是通过提取、清洗、转化和优化原始数据中的特征,使其适应机器学习模型的输入要求,并最大化模型的预测能力和性能。特征工程本质上是将原始的、非结构化的或半结构化的数据转化为结构化数据,以便可以通过机器学习模型进行有效的学习。原创 2024-11-12 20:44:09 · 717 阅读 · 0 评论 -
金融风控-随机森林建模难点与调参注意事项
随机森林在金融风控中的应用非常广泛,尤其是在欺诈检测、信用评估等任务中。本文介绍了使用随机森林进行建模的常见难点及调参技巧,并提供了一个完整的案例,展示了如何在金融风控中应用随机森林模型。通过调整关键参数、使用过采样技术以及网格搜索优化模型,可以显著提高模型的性能。原创 2024-11-09 12:05:49 · 1426 阅读 · 0 评论 -
智能识别在风控中的应用-金融欺诈检测-python 随机森林算法实现代码
*智能识别(Intelligent Recognition)**是指通过机器学习、深度学习等方法,从大量的数据中提取潜在的有价值信息,以帮助识别各种类型的风险。智能识别技术可以自动分析数据、检测异常、识别模式,并做出相应的预测和判断。**常用技术:**常见的智能识别技术包括机器学习(如分类、)等。:例如在金融欺诈检测中,通过分析历史交易数据,识别出哪些交易可能存在异常行为;在信贷审批中,通过客户的过往信用记录、交易习惯等信息,预测是否存在违约风险。原创 2024-11-09 11:53:39 · 379 阅读 · 0 评论 -
机器学习介绍-机器学习课程整理(1)
Python编程基础复习NumPy、Pandas数据处理库数据清洗与预处理(缺失值处理、数据归一化、特征选择)理论讲解:每个主题的核心概念、算法原理与数学基础实践操作:通过Jupyter Notebook和Python实践每个算法,解决实际问题案例分析:结合实际数据集进行案例分析(如:金融风控、医疗诊断、推荐系统等)原创 2024-11-08 18:53:15 · 392 阅读 · 0 评论