牛客小白月赛5——I 区间(前缀和)

本文介绍了一种解决区间操作求和问题的方法。通过使用前缀和而非线段树或树状数组来提高效率,适用于仅有一次查询的情况。文章提供了一个具体的示例代码,展示了如何通过前缀和的方式实现区间加减操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

题目描述

    Apojacsleam喜欢数组。

    他现在有一个n个元素的数组a,而他要对a[L]-a[R]进行M次操作:

        操作一:将a[L]-a[R]内的元素都加上P

        操作二:将a[L]-a[R]内的元素都减去P

    最后询问a[l]-a[r]内的元素之和?

    请认真看题干及输入描述。

输入描述:

输入共M+3行:

第一行两个数,n,M,意义如“题目描述”

第二行n个数,描述数组。

第3-M+2行,共M行,每行四个数,q,L,R,P,若q为1则表示执行操作2,否则为执行操作1

第4行,两个正整数l,r

输出描述:

一个正整数,为a[l]-a[r]内的元素之和

 

示例1

输入

10 5
1 2 3 4 5 6 7 8 9 10
1 1 5 5
1 2 3 6
0 2 5 5 
0 2 5 8
1 4 9 6
2 7

输出

23

说明


 

反思:

一看见区间操作就头脑发热,上去就写线段树,然后超内存错误了五六发........

树状数组倒是可以直接过,线段树其实也行,只要别开lazy数组就行(开习惯了——头巨铁)。

今天又回过头来看这个题,发现只有一次查询,那么用前缀和更快且好写。看了别人的代码发现有人把每个数处理成前一个数的差值,最后再还原回来。个人觉的这个方法麻烦而且代码又长又慢,我这里多开了一个数组,最后只需要for循环一遍[1,R]就行。

PS:以后查询只有一次的时候先想想前缀和。

代码:

#include <bits/stdc++.h>

using namespace std;

const int MAXN = 1e6+10;

long long board[MAXN];
long long Add[MAXN];

int main(){
	
	int N,M;
	long long d;
	int a,b,c;
	while(scanf("%d %d",&N,&M) == 2){
		memset(Add,0,sizeof Add);
		for(int i=1 ; i<=N ; ++i)scanf("%lld",&board[i]);
		for(int i=1 ; i<=M ; ++i){
			scanf("%d %d %d %lld",&a,&b,&c,&d);
			if(a == 1){
				Add[b] -= d;
				Add[c+1] += d;
			}
			else {
				Add[b] += d;
				Add[c+1] -= d;
			}
		}
		long long add = 0;
		long long sum = 0;
		int L,R;
		scanf("%d %d",&L,&R);
		for(int i=1 ; i<=R ; ++i){
			add += Add[i];
			if(i>=L && i<=R)sum += add+board[i];
		}
		printf("%lld\n",sum);
	}
	
	return 0;
}

 

### 关于牛客小白109的信息 目前并未找到关于牛客小白109的具体比信息或题解内容[^5]。然而,可以推测该事可能属于牛客网举办的系列算法之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问题。 如果要准备类似的事,可以通过分析其他场次的比题目来提升自己的能力。例如,在牛客小白13中,有一道与二叉树相关的题目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问题的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体题目,但它提供了一个可借鉴的设计思路。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值