Whisper 是由 OpenAI 开发的一款强大的语音识别模型,具有出色的多语言处理能力。搭建和使用 Whisper 模型可以帮助您将音频内容转换为文本,这在语音转写、语音助手、字幕生成等应用中都具有广泛的用途。本指南将对如何在本地环境中搭建 Whisper 语音识别模型进行详细的说明,并通过实例演示使您更容易理解和应用。
2. 准备工作
2.1 硬件要求
- 处理器:最低双核 CPU,推荐四核以上。
- 内存:至少 8GB RAM,推荐 16GB RAM。
- 存储:足够的硬盘空间,用于安装软件和存储模型及音频数据,建议至少 10GB 可用空间。
- GPU(可选):如果使用 GPU 加速,建议 NVIDIA GPU,需安装 CUDA。
2.2 软件要求
- 操作系统:Windows 10 或 Linux(如 Ubuntu)。
- Python:建议使用 Python 3.8 以上版本。
- Git:用于克隆代码库。
- ffmpeg:用于处理音频文件。
3. 安装 Python 环境
如果您的系统尚未安装 Python,可以遵循如下步骤:
Windows
- 访问 Python 官网 下载并安装最新版本的 Python。
- 在安装过程中,勾选 “Add Python to PATH” 选项。
Linux
在终端中输入以下命令安装