【ONNX】Faster-rcnn 转 ONNX

本文介绍如何将FasterRCNN模型从.pth格式转换为ONNX格式,使用了maskrcnn-benchmark库,并提供了详细的代码示例。转换后的模型可用于多种平台的部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Faster RCNN代码可以参考下面链接:

https://github.com/facebookresearch/maskrcnn-benchmark

最后模型会保存为.pth格式,可以通过如下代码转为ONNX

import os
import numpy

from io import BytesIO

from matplotlib import pyplot

import requests
import torch
import timeit

from PIL import Image
from maskrcnn_benchmark.config import cfg
from predictor import COCODemo
from maskrcnn_benchmark.structures.image_list import ImageList

import pytorch_export_patch

if __name__ == "__main__":
    # load config from file and command-line arguments
    project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    cfg.merge_from_file(
        os.path.join(project_dir,
                     "configs/caffe2/e2e_faster_rcnn_R_50_FPN_1x_caffe2.yaml"))
    cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
    cfg.freeze()

    # prepare object that handles inference plus adds predictions on top of image
    coco_demo = COCODemo(
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=480,
    )

    # prepare for onnx export
    coco_demo.model.prepare_onnx_export()


def single_image_to_top_predictions(image):
    image_list = ImageList(image.unsqueeze(0), [(int(image.size(-2)), int(image.size(-1)))])

    for param in coco_demo.model.parameters():
        param.requires_grad = False

    result, = coco_demo.model(image_list)
    scores = result.get_field("scores")
    result = (result.bbox, result.get_field('labels'), scores)
    return result


class FRCNNModel(torch.nn.Module):
    def forward(self, image):
        return single_image_to_top_predictions(image)


def fetch_image(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")


if __name__ == '__main__':
    pil_image = fetch_image(
        url="http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg")

    """
    Preprocessing image.
    """
    # convert to BGR format
    image = torch.from_numpy(numpy.array(pil_image)[:, :, [2, 1, 0]])
    original_image = image
    image = torch.nn.functional.upsample(image.permute(2, 0, 1).unsqueeze(0).to(torch.float), size=(960, 1280)).to(torch.uint8).squeeze(0).permute(1, 2, 0).to('cpu')

    image = image.permute(2, 0, 1)

    if not cfg.INPUT.TO_BGR255:
        image = image.float() / 255.0
        image = image[[2, 1, 0]]
    else:
        image = image.float()

    # we absolutely want fixed size (int) here (or we run into a tracing error (or bug?)
    # or we might later decide to make things work with variable size...
    image = image - torch.tensor(cfg.INPUT.PIXEL_MEAN)[:, None, None].to('cpu')

    model_path = 'faster_rcnn_R_50_FPN_1x.onnx'

    with torch.no_grad():
        model = FRCNNModel()
        model.eval()

        torch.onnx.export(model, (image,), model_path, verbose=True, opset_version=10, strip_doc_string=True, do_constant_folding=True)

        pytorch_export_patch.postprocess_model(model_path)

 参考:https://github.com/BowenBao/maskrcnn-benchmark/blob/onnx_stage/demo/export_to_onnx.py

<think>好的,我需要帮助用户解决如何在Qt中集成Faster R-CNN模型并通过摄像头实现实时物体识别的问题。首先,我需要理解用户的需求。他们希望将已经训练好的Faster R-CNN模型与自定义的Qt界面结合,调用摄像头进行实时检测。这涉及到几个关键步骤:模型换、Qt界面开发、摄像头调用、模型集成以及性能优化。 首先,模型换。Faster R-CNN通常是用PyTorch或TensorFlow等框架训练的,但Qt主要用C++开发,所以可能需要将模型换为ONNX格式,或者使用LibTorch(PyTorch的C++版本)来加载模型。我需要考虑不同框架的兼容性,以及如何确保换后的模型保持相同的精度和性能。 接下来是Qt界面开发。用户需要调用摄像头,Qt中常用的方法是使用QCamera类和相关模块。同时,界面需要显示视频流和检测结果,这可能需要用到QGraphicsView或OpenGL来高效渲染图像。此外,还需要处理摄像头帧的捕获和传递给模型进行推理的流程。 然后是模型集成部分。在C++环境中加载深度学习模型可能会遇到依赖库的问题,比如需要配置OpenCV、LibTorch等。需要指导用户正确配置这些库,并编写代码将摄像头捕获的帧预处理成模型需要的输入格式,执行推理,然后解析输出结果,绘制边界框和标签。 性能优化是关键,尤其是实时性要求。Faster R-CNN本身计算量较大,可能无法达到很高的帧率。需要考虑模型简化、使用GPU加速、多线程处理(比如将推理放在单独的线程中,避免阻塞主界面线程)以及降低输入图像分辨率等方法。此外,可能还需要提及异步处理或帧跳过策略来平衡延迟和性能。 还要注意引用用户提供的资料,比如引用[1]中提到Faster R-CNN在水果检测中的应用,可以举例说明如何将模型应用到具体场景中。同时,引用[2]提到的性能优化方法,如多目标检测和模型优化技巧,需要结合到解决方案中。 最后,需要验证整个流程的可行性,确保各步骤衔接顺畅,比如摄像头数据是否能正确捕获,模型推理结果是否准确显示在界面上,以及整体性能是否满足实时需求。可能还需要提示用户进行测试和调试,处理可能出现的异常情况,比如摄像头无法打开、模型加载失败等。 总结一下,步骤大致分为:模型换和准备、Qt界面搭建、摄像头集成、模型推理集成、性能优化。需要详细说明每个步骤的具体操作,并给出代码示例和配置建议,同时引用相关文献支持建议的有效性。</think>将Faster R-CNN模型与Qt界面集成实现实时检测,可分为以下步骤: ### 一、模型换与封装 1. **模型导出** 使用PyTorch的`torch.jit.trace`将训练好的Faster R-CNN模型换为TorchScript格式: ```python traced_model = torch.jit.trace(model, example_input) traced_model.save("faster_rcnn.pt") ``` 或换为ONNX格式以实现跨平台兼容[^1]。 2. **C++推理接口** 在Qt项目中配置LibTorch(PyTorch C++ API),创建推理类: ```cpp #include <torch/script.h> class Detector { public: void init(const std::string& model_path) { module_ = torch::jit::load(model_path); } std::vector<DetectionResult> predict(cv::Mat& frame); }; ``` ### 二、Qt界面开发 1. **摄像头模块** 使用`QCamera`和`QVideoProbe`捕获实时画面: ```cpp QCamera* camera = new QCamera(QCameraInfo::defaultCamera()); QVideoProbe* probe = new QVideoProbe; connect(probe, &QVideoProbe::videoFrameProbed, [=](const QVideoFrame& frame){ processFrame(frame); }); ``` 2. **图像显示组件** 使用`QGraphicsView`+`QGraphicsPixmapItem`实现带覆盖层的显示: ```cpp QGraphicsScene* scene = new QGraphicsScene; QGraphicsPixmapItem* pixmapItem = scene->addPixmap(QPixmap()); ``` ### 三、系统集成流程 1. **帧处理流水线** ```mermaid graph LR A[摄像头捕获] --> B[换为OpenCV Mat] B --> C[图像预处理] C --> D[模型推理] D --> E[解析边界框] E --> F[绘制检测结果] F --> G[显示到Qt界面] ``` 2. **关键代码实现** ```cpp void MainWindow::processFrame(const QVideoFrame& frame){ QImage image = frame.image(); cv::Mat cvFrame(image.height(), image.width(), CV_8UC3, image.bits(), image.bytesPerLine()); // 预处理 cv::resize(cvFrame, cvFrame, cv::Size(800,600)); tensor = torch::from_blob(cvFrame.data, {1,600,800,3}, torch::kByte); tensor = tensor.permute({0,3,1,2}).to(torch::kFloat); // 推理 auto outputs = detector_->predict(tensor); // 绘制结果 for(const auto& res : outputs) { cv::rectangle(cvFrame, res.bbox, cv::Scalar(0,255,0), 2); } // 更新界面 QPixmap pixmap = QPixmap::fromImage(QImage( cvFrame.data, cvFrame.cols, cvFrame.rows, QImage::Format_RGB888)); pixmapItem->setPixmap(pixmap); } ``` ### 四、性能优化策略 1. **异步推理** 使用`QThreadPool`创建专用推理线程: ```cpp class InferenceTask : public QRunnable { void run() override { auto results = detector_->predict(frame_); emit resultReady(results); } }; ``` 2. **GPU加速** 启用CUDA加速(需NVIDIA显卡支持): ```cpp tensor = tensor.to(torch::kCUDA); module_.to(torch::kCUDA); ``` 3. **分辨率优化** 将输入分辨率从Faster R-CNN默认的$800\times 600$降低到$640\times 480$,可提升约30%的帧率[^2]。 ### 五、部署注意事项 1. **依赖项打包** 需包含: - LibTorch动态库 - OpenCV 4.x DLLs - CUDA运行时库(若使用GPU) 2. **跨平台兼容** 在Windows下使用MSVC编译器,Linux下建议配置LD_LIBRARY_PATH环境变量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值