7、langChain和RAG实战:基于LangChain和RAG的常用案例实战

PDF 文档问答ChatBot

本地上传文档

  • 支持 pdf
  • 支持 txt
  • 支持 doc/docx

问答页面

python环境

  • 新建一个requirements.txt文件
streamlit
python-docx
PyPDF2
faiss-cpu
langchain
langchain-core
langchain-community
langchain-openai
  • 然后安装相应的包
pip install -r requirements.txt -U

代码

创建一个 pdf_search.py 文件, 把下边的复制进去
注意:配置好OPEN_API 接口地址和密钥的环境变量

#示例:pdf_search.py
# 导入Streamlit库,用于创建Web应用
import streamlit as st
# 导入递归字符文本分割器,用于将文档分割成小块
from langchain.text_splitter import RecursiveCharacterTextSplitter
# 导入FAISS向量存储,用于存储和检索文档嵌入
from langchain_community.vectorstores import FAISS
# 导入OpenAI聊天模型
from langchain_openai import ChatOpenAI
# 导入OpenAI嵌入模型,用于生成文本嵌入
from langchain_openai import OpenAIEmbeddings
# 导入Document类,用于封装文档内容和元数据
from langchain_core.documents import Document
# 导入对话检索链,用于处理对话和检索
from langchain.chains import ConversationalRetrievalChain
# 导入docx库,用于处理Word文档
import docx
# 导入PyPDF2库,用于处理PDF文档
from PyPDF2 import PdfReader

# 设置页面配置,包括标题、图标和布局
st.set_page_config(page_title="文档问答", page_icon=":robot:", layout="wide")

# 设置页面的CSS样式
st.markdown(
    """<style>
.chat-message {
    padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
}
.chat-message.user {
    background-color: #2b313e
}
.chat-message.bot {
    background-color: #475063
}
.chat-message .avatar {
  width: 20%;
}
.chat-message .avatar img {
  max-width: 78px;
  max-height: 78px;
  border-radius: 50%;
  object-fit: cover;
}
.chat-message .message {
  width: 80%;
  padding: 0 1.5rem;
  color: #fff;
}
.stDeployButton {
            visibility: hidden;
        }
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}

.block-container {
    padding: 2rem 4rem 2rem 4rem;
}

.st-emotion-cache-16txtl3 {
    padding: 3rem 1.5rem;
}
</style>
# """,
    unsafe_allow_html=True,
)

# 定义机器人消息模板
bot_template = """
<div class="chat-message bot">
    <div class="avatar">
        <img src="https://cdn.icon-icons.com/icons2/1371/PNG/512/robot02_90810.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
    </div>
    <div class="message">{
   {MSG}}</div>
</div>
"""

# 定义用户消息模板
user_template = """
<div class="chat-message user">
    <div class="avatar">
        <img src="https://www.shareicon.net/data/512x512/2015/09/18/103160_man_512x512.png" >
    </div>    
    <div class="message">{
   {MSG}}</div>
</div>
"""

# 从PDF文件中提取文本
def get_pdf_text(pdf_docs):
    # 存储提取的文档
    docs = []
    for document in pdf_docs:
        if document.type == "application/pdf":
            # 读取PDF文件
            pdf_reader = PdfReader(document)
            for idx, page in enumerate(pdf_reader.pages):
                docs.append(
                    Document(
                        # 提取页面文本
                        page_content=page.extract_text(),
                        # 添加元数据
                        metadata={
   "source": f"{
     document.name} on page {
     idx}"},
                    )
                )
        elif document.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
            # 读取Word文档
            doc = docx.Document(document)
            for idx, paragraph in enumerate(doc.paragraphs):
                docs.append(
                    Document(
                        # 提取段落文本
                        page_content=paragraph.text,
                        # 添加元数据
                        metadata={
   "source": f"{
     document.name} in paragraph {
     idx}"},
                    )
                )
        elif document.type == "text/plain":
            # 读取纯文本文件
            text = document.getvalue().decode("utf-8")
            docs.append(Document(page_content=text, metadata={
   "source": document.name}))

    return docs

# 将文档分割成小块文本
def get_text_chunks(docs):
    # 创建文本分割器
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=0)
    # 分割文档
    docs_chunks = text_splitter.split_documents(docs)
    return docs_chunks

# 创建向量存储
def get_vectorstore(docs_chunks):
    # 创建OpenAI嵌入模型
    embeddings = OpenAIEmbeddings()
    # 创建FAISS向量存储
    vectorstore = FAISS.from_documents(docs_chunks, embedding=embeddings)
    return vectorstore

# 创建对话检索链
def get_conversation_chain(vectorstore):
    # 创建OpenAI聊天模型
    llm = ChatOpenAI(model="gpt-4o")
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        # 使用向量存储作为检索器
        retriever=vectorstore.as_retriever(),
        # 返回源文档
        return_source_documents=True,
    )
    return conversation_chain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值