PDF 文档问答ChatBot
本地上传文档
- 支持 pdf
- 支持 txt
- 支持 doc/docx
问答页面
python环境
- 新建一个
requirements.txt
文件
streamlit
python-docx
PyPDF2
faiss-cpu
langchain
langchain-core
langchain-community
langchain-openai
- 然后安装相应的包
pip install -r requirements.txt -U
代码
创建一个 pdf_search.py 文件, 把下边的复制进去
注意:配置好OPEN_API 接口地址和密钥的环境变量
#示例:pdf_search.py
# 导入Streamlit库,用于创建Web应用
import streamlit as st
# 导入递归字符文本分割器,用于将文档分割成小块
from langchain.text_splitter import RecursiveCharacterTextSplitter
# 导入FAISS向量存储,用于存储和检索文档嵌入
from langchain_community.vectorstores import FAISS
# 导入OpenAI聊天模型
from langchain_openai import ChatOpenAI
# 导入OpenAI嵌入模型,用于生成文本嵌入
from langchain_openai import OpenAIEmbeddings
# 导入Document类,用于封装文档内容和元数据
from langchain_core.documents import Document
# 导入对话检索链,用于处理对话和检索
from langchain.chains import ConversationalRetrievalChain
# 导入docx库,用于处理Word文档
import docx
# 导入PyPDF2库,用于处理PDF文档
from PyPDF2 import PdfReader
# 设置页面配置,包括标题、图标和布局
st.set_page_config(page_title="文档问答", page_icon=":robot:", layout="wide")
# 设置页面的CSS样式
st.markdown(
"""<style>
.chat-message {
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
}
.chat-message.user {
background-color: #2b313e
}
.chat-message.bot {
background-color: #475063
}
.chat-message .avatar {
width: 20%;
}
.chat-message .avatar img {
max-width: 78px;
max-height: 78px;
border-radius: 50%;
object-fit: cover;
}
.chat-message .message {
width: 80%;
padding: 0 1.5rem;
color: #fff;
}
.stDeployButton {
visibility: hidden;
}
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.block-container {
padding: 2rem 4rem 2rem 4rem;
}
.st-emotion-cache-16txtl3 {
padding: 3rem 1.5rem;
}
</style>
# """,
unsafe_allow_html=True,
)
# 定义机器人消息模板
bot_template = """
<div class="chat-message bot">
<div class="avatar">
<img src="https://cdn.icon-icons.com/icons2/1371/PNG/512/robot02_90810.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
</div>
<div class="message">{
{MSG}}</div>
</div>
"""
# 定义用户消息模板
user_template = """
<div class="chat-message user">
<div class="avatar">
<img src="https://www.shareicon.net/data/512x512/2015/09/18/103160_man_512x512.png" >
</div>
<div class="message">{
{MSG}}</div>
</div>
"""
# 从PDF文件中提取文本
def get_pdf_text(pdf_docs):
# 存储提取的文档
docs = []
for document in pdf_docs:
if document.type == "application/pdf":
# 读取PDF文件
pdf_reader = PdfReader(document)
for idx, page in enumerate(pdf_reader.pages):
docs.append(
Document(
# 提取页面文本
page_content=page.extract_text(),
# 添加元数据
metadata={
"source": f"{
document.name} on page {
idx}"},
)
)
elif document.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
# 读取Word文档
doc = docx.Document(document)
for idx, paragraph in enumerate(doc.paragraphs):
docs.append(
Document(
# 提取段落文本
page_content=paragraph.text,
# 添加元数据
metadata={
"source": f"{
document.name} in paragraph {
idx}"},
)
)
elif document.type == "text/plain":
# 读取纯文本文件
text = document.getvalue().decode("utf-8")
docs.append(Document(page_content=text, metadata={
"source": document.name}))
return docs
# 将文档分割成小块文本
def get_text_chunks(docs):
# 创建文本分割器
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=0)
# 分割文档
docs_chunks = text_splitter.split_documents(docs)
return docs_chunks
# 创建向量存储
def get_vectorstore(docs_chunks):
# 创建OpenAI嵌入模型
embeddings = OpenAIEmbeddings()
# 创建FAISS向量存储
vectorstore = FAISS.from_documents(docs_chunks, embedding=embeddings)
return vectorstore
# 创建对话检索链
def get_conversation_chain(vectorstore):
# 创建OpenAI聊天模型
llm = ChatOpenAI(model="gpt-4o")
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
# 使用向量存储作为检索器
retriever=vectorstore.as_retriever(),
# 返回源文档
return_source_documents=True,
)
return conversation_chain