兔子繁衍问题 (考虑死亡)

本文探讨了一个兔子繁殖问题,其中考虑了兔子的寿命和繁殖特点。通过观察和总结规律,提出了一个递推公式来计算第N年年中草原上的兔子总数,并提供了一段Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

兔子繁殖问题(考虑兔子会死亡的情况)--java实现

问题描述:

在一片广袤无垠的大草原上,生活一群兔子;无需考虑性别,每只兔子每年年末都会生 2 只小兔子,这 2 只小兔子在第二年年末也会生2只小兔子;

兔子能活5年,岁的兔子不能在那年生小兔子;假如第一年年中,草原上有 10 只未满 1 岁的兔子,他们在年末都会开始生小兔子,请问,第 N 年年中,草原上有多少只兔子?


思路整理:

1 首先需要找到这道题的规律

第一年:                            10                                        ------兔子的总数    10                       

第二年:                       10       20                                ------兔子的总数    30    新出生的兔子  20    

第三年:                   10       20     60                            ------兔子的总数   9   新出生的兔子  60

第四年:             10      20    60         180                      ------兔子的总数  270    新出生的兔子  180 

第五年:        10     20     60     180      540                   ------兔子的总数   810    新出生的兔子  540

第六年:     10     20     60     180      540    1600            ------兔子的总数   2400    新出生的兔子  1600   死亡的兔10

第七年:     20     60     180      540    1600     4760          ------兔子的总数   7140    新出生的兔子  4760   死亡的兔20

               。。。。。

        A  找到规律后可以发现 这道题感觉像一颗二叉树,继续吧问题的规律总结出来。到了第六年的时候第一年的兔子会死掉。并且不会生育出新的兔子,就是说在第六年的时候没有第一年兔子的后代。

       B 前五年的规律很好找 F(N)= F(N-1) * 3;之后的规律需要总结出看上图看可以明显的得出 第六年死去的兔子就是第一年出生的,第七年死亡的兔子就是第二年出生的所以每年新出生的兔子 = 这年所有的兔子总数的2/3 递推公式可以得出

      F(N)  = (F(N-1) - F(N-5)*2/3)  *3         当N>6时成立



3   是不是能使用递归的思路,这里可以类比动态规划的求解。

确定以下三点  【最优子结构】

                    【边界】

                   【状态转移方程】

程序实现

package algorithm;

import java.util.HashMap;
import java.util.Iterator;
import java.util.Set;

public class Test {
	
	public static Long count(int n, HashMap<Integer,Long> map){
		if(n<1){
			return 0l;
		}
		if(n==1){
			return 10l;
		}
		if(n==2){
			return 30l;
		}
		if(n==3){
			return 90l;
		}
		if(n==4){
			return 270l;
		}
		if(n==5){
			return 810l;
		}
		if(n==6){
			return 2400l;
		}
		if(map.containsKey(n)){
			return map.get(n);
		}
		else{
			Long value = (count(n-1,map)*3-count(n-5,map)*2);//前一年所有的兔子减去五年前新出生的兔子 再乘3
			map.put( n, value);
			return value;
		}
	} 
	public static void main(String[] args) {
		
		HashMap<Integer, Long> map =new  HashMap<Integer,Long>();  //使用Hashmap 哈希表保存已经算过的
		
		
		System.out.println(count(6,map));
		
		
		
		
		
	}

}

代码是已经使用HashMap 作为字典优化过的。

其中主要涉及到的面试的知识点就是逻辑思维能力,和 java中的一些大数字的处理比如我们常常使用的Long 类型

等等的小细节性的东西。






### C++ 实现斐波那契序列兔子繁衍问题 以下是基于引用中的描述以及经典的斐波那契数列算法,提供一种高效的解决方案来计算第 `n` 个月的兔子总数。 #### 高效迭代法实现 为了提高效率并减少递归带来的栈溢出风险,可以采用循环的方式实现斐波那契数列。这种方法的时间复杂度为 O(n),空间复杂度为 O(1)。 ```cpp #include <iostream> using namespace std; int fibonacciRabbits(int n) { if (n == 1 || n == 2) return 1; int prev = 1, curr = 1; // 初始化前两个月的兔子数量 for (int i = 3; i <= n; ++i) { int next = prev + curr; // 当月的兔子等于上一个月和再上一个月之和 prev = curr; // 更新前一个月的数量 curr = next; // 更新当前月份的数量 } return curr; // 返回第 n 个月的兔子数量 } int main() { int n; cout << "请输入要查询的月份:"; cin >> n; if (n >= 1 && n <= 50) { // 假设输入范围合理 cout << "第 " << n << " 个月有 " << fibonacciRabbits(n) << " 对兔子。" << endl; } else { cout << "输入超出有效范围!" << endl; } return 0; } ``` 上述代码通过迭代方式实现了斐波那契数列,解决了兔子繁衍问题。它利用两个变量存储前两个月的数据,并逐步更新至目标月份的结果[^4]。 --- #### 使用动态数组保存中间结果 如果需要记录每一步的结果以便后续分析,则可以通过动态规划的思想构建一个数组来保存所有的中间状态: ```cpp #include <iostream> #define MAX_MONTHS 50 using namespace std; long long rabbitsCount(int n) { if (n == 1 || n == 2) return 1; long long fibArray[MAX_MONTHS]; fibArray[1] = 1; fibArray[2] = 1; for (int i = 3; i <= n; ++i) { fibArray[i] = fibArray[i - 1] + fibArray[i - 2]; // 斐波那契关系式 } return fibArray[n]; } int main() { int n; cout << "请输入要查询的月份:"; cin >> n; if (n >= 1 && n <= MAX_MONTHS) { cout << "第 " << n << " 个月有 " << rabbitsCount(n) << " 对兔子。" << endl; } else { cout << "输入超出有效范围!" << endl; } return 0; } ``` 该方法不仅能够得到最终结果,还可以方便地查看任意月份内的兔子数量变化情况[^3]。 --- #### 解决方案总结 以上两种方法均能有效地解决兔子繁衍问题。其中,第一种方法更加节省内存资源;第二种方法则更适合于需要保留历史数据的应用场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值