Leetcode 169

题目

169. 多数元素 

思路

1)最容易想到的就是使用一个map来统计每个元素出现的次数,当前元素出现次数>(n/2) 时,就不再遍历并返回当前元素。

2)最近做的题目都是双指针,于是想着将数组进行排序后,相同的元素肯定是连续排列在一起的,使用双指针来判断每个元素出现次数,将大于n/2的元素进行返回。看了题解,发现排完序后,下标在(n/2)的元素就一定是多数元素!还得是数学!

3)看了题解的那个投票法,可以理解为:当删除两个不同元素的后,剩下的一定是多数元素。

代码

// hashmap
public int majorityElement(int[] nums) {
        if(nums.length == 1){
            return nums[0];
        }
        // 遍历数组 统计每个元素出现的次数
        HashMap<Integer, Integer> map = new HashMap();
        for(int item: nums){
            if(!map.containsKey(item)){
                map.put(item, 1);
            }
            else{
                int occur = map.get(item) + 1;
                if(occur > (nums.length / 2)){
                    return item;
                }
                map.put(item, occur);
            }
        }
        return -1;
    }
// 排序遍历 实际两行代码就可以了 排完序后返回nums[n/2]
public int majorityElement(int[] nums) {
        if(nums.length == 1){
            return nums[0];
        }
        // 排序
        Arrays.sort(nums);
        int slow = 0;
        int fast = slow + 1;
        while(fast < nums.length){
            if(nums[fast] == nums[slow]){
                fast ++;
            }
            else{
                int occur = fast - slow;
                if(occur > (nums.length / 2)){
                    return nums[slow];
                }
                slow = fast;
                fast ++;
            }
        }
        // 数组中一定存在多数元素 则跳出循环表示当前nums[slow]与最后一个元素都是相等的 因此返回nums[slow]
        return nums[slow];
}
// 投票法
public int majorityElement(int[] nums) {
        int constant = nums[0];
        int times = 1;
        for(int i = 1; i < nums.length; i++){
            if(nums[i] == constant){
                // 相同元素++ 表示多一条命 也就是可以和其他不同元素删掉删掉次数++
                times ++;
            }
            else{
                if(times == 0){
                    // 当前数已和其他数同归于尽 删掉了
                    constant = nums[i];
                    times = 1;
                }
                else{
                    times --;
                }
            }
        }
        return constant;
    }

题目

 134. 加油站

思路

1)自己想的也是遍历,但是提交超出时间限制,而且对于循环遍历数组也没有想到取模运算。

2) 循环遍历以每个下标为起点的结果,但是下一次遍历起点是上一次终点+1

代码

int n = gas.length;
        int i = 0;
        while(i < n){
            // 从每个节点开始遍历
            int sumOfGas = 0, sumOfCost = 0;
            int cnt = 0;
            while(cnt < n){
                // 取模运算是为了循环遍历这个数组
                int j = (i + cnt) % n;
                sumOfCost += cost[j];
                sumOfGas += gas[j];
                if(sumOfCost > sumOfGas){
                    break;
                }
                cnt ++;

            }
            // 走过了所有的节点
            if(cnt == n){
                return i;
            }
            else{
                // 设置下一下遍历的起点为当前能够走最远的节点+1
                i = i + cnt + 1;
            }
        }
        return -1;

### LeetCode 169 Majority Element 的 Python 解法 LeetCode169 题的目标是从数组中找到出现次数超过 ⌊n/2⌋ 次的元素。以下是几种常见的解决方法及其解释。 #### 方法一:基于排序的方法 通过将输入列表 `nums` 排序,目标元素一定会位于索引位置 `(len(nums)) / 2` 处,这是因为该元素的数量超过了总数的一半[^1]。 ```python class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ return sorted(nums)[len(nums) // 2] ``` 此方法的时间复杂度主要由排序决定,即 O(n log n),空间复杂度取决于所使用的排序算法实现方式。 --- #### 方法二:哈希表计数 利用字典记录每个数字出现的频率,并在遍历过程中判断是否有某个数字的频次已经超过一半长度[^3]。 ```python class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ count_dict = {} for num in nums: count_dict[num] = count_dict.get(num, 0) + 1 if count_dict[num] > len(nums) // 2: return num ``` 这种方法的时间复杂度为 O(n),其中 n 是数组大小;而额外的空间开销则依赖于不同数值的数量,最坏情况下可能达到 O(n)。 --- #### 方法三:Boyer-Moore 投票算法 这是一种线性时间复杂度且仅需常量级额外存储空间的有效解决方案。基本思路是维护一个候选者以及对应的计数器,在一次扫描之后即可得出结果[^5]。 ```python class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ candidate = None count = 0 for num in nums: if count == 0: candidate = num count += (1 if num == candidate else -1) return candidate ``` 上述代码实现了 Boyer-Moore 投票算法的核心逻辑,最终返回的结果就是满足条件的那个多数派成员。它的运行效率非常高——时间复杂度仅为 O(n),而且不需要任何辅助数据结构来保存中间状态。 --- ### 总结 三种不同的策略各有优劣之处: - **排序法**简单直观但耗时较长; - **哈希表统计法**能够快速定位到符合条件的数据项不过增加了内存负担; - **投票法则兼顾速度与资源节约两方面优势成为最优选之一**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值