处理物理现象:寄生效应、串扰和工艺变化
1. 寄生耦合电容与电阻
在布局设计中,布局模块的几何信息可以以参数化的方式轻松存储,因为布局模块的形状预先已知且非常规则。其中,电阻是我们较为关注的,它取决于实际的模块放置。对于电阻,有一个封闭形式的表达式:
[
R = \frac{L}{S} \cdot k_1 + k_2
]
其中,$L$ 是两个耦合对象之间的有效横向耦合长度,$S$ 是这些对象之间的间距,$k_1$ 和 $k_2$ 是给定工艺的常数。该方程用于建模电阻,其形式基于物理原理,是通过求解两个圆形衬底接触的拉普拉斯方程得到的。其形式稍复杂是因为包含了三维效应,并且由于矩形几何形状没有简单的表达式,所以使用了适用于电路接触的表达式作为近似。
在实际布局中,互连通常由同一层或不同层的许多相邻导线组成。当相邻导线位于同一层时,存在线间电容(横向电容);其他情况则涉及面积电容和边缘电容,具体情况如图 1 所示。横向电容取决于同一层上对象之间的距离以及横向对象平行部分的最长公共长度。这些电容的值可以在特定的技术文件中找到,也可以为许多与布线相关的重要寄生现象推导出相当准确的封闭形式表达式。
电容类型 | 相关因素 |
---|---|
线间电容(横向电容) | 同一层对象间距、平行部分最长公共长度 |
面积电容 | 无明确提及 |
边缘电 |