无所不在的法卡斯引理:理论与应用
1. 引言
线性规划的学生们都会接触到法卡斯引理,它以原始形式或线性规划对偶定理的形式呈现。法卡斯引理的应用极为广泛,本文将探讨其在多个领域的应用。
在处理线性代数问题时,我们常遇到这样的问题:给定一个 $m\times n$ 的实数矩阵 $A$ 和向量 $b\in\mathbb{R}^m$,寻找一个向量 $x\in\mathbb{R}^n$ 使得 $Ax = b$,或者证明这样的 $x$ 不存在。
若 $Ax = b$ 有解,只需展示解,他人便可验证。但当系统无解时,要让人信服并非易事。通过将问题转化为线性代数问题,即判断 $b$ 是否在 $A$ 的列向量张成的空间中,我们得到了线性代数基本定理。
定理 1
设 $A$ 是一个 $m\times n$ 的矩阵,$b\in\mathbb{R}^m$,$F = {x\in\mathbb{R}^n: Ax = b}$。则要么 $F\neq\varnothing$,要么存在 $y\in\mathbb{R}^m$ 使得 $yA = 0$ 且 $yb\neq 0$,但两者不能同时成立。
证明如下:若 $F\neq\varnothing$,则证明完成。若 $F = \varnothing$,意味着 $b$ 不在 $A$ 的列向量张成的空间中。若将 $A$ 的列向量张成的空间视为一个平面,那么 $b$ 是一个指向平面外的向量。因此,任何与该平面正交(即与 $A$ 的每一列正交)的向量 $y$ 与 $b$ 的点积必定不为零。为验证“两者不能同时成立”这部分,假设存在 $x$ 使得 $Ax = b$ 以及 $y$ 使得 $yA = 0$ 且 $yb\n