
Python综合运用
文章平均质量分 77
本专栏深入探讨Python在Web开发、数据分析、自动化、AI等领域的实战应用,结合Django、Pandas、TensorFlow等主流库,讲解模块化设计、性能优化及工程实践。通过案例驱动,帮助开发者掌握Python高阶技巧,提升代码质量与开发效率,打造高效、可维护的Python应用。
老胖闲聊
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python 综合运用:MD 转 DOCX 工具
下面是一个使用 Python 和 PyQt5 实现的 Markdown 转 DOCX 工具,具有美观的图形界面,支持表格和代码块转换,并提供转换预览功能。原创 2025-07-22 16:37:19 · 584 阅读 · 0 评论 -
Python 数据拆分和合并超详细讲解
深入讲解Python中数据拆分和合并的各种方法,涵盖基础到高级技巧,并提供大量实际案例。原创 2025-07-22 15:52:48 · 346 阅读 · 0 评论 -
Python TensorFlow库【深度学习框架】全面讲解与案例
自定义损失函数和训练步骤# 初始化权重# 前向传播计算# 使用自定义层])# 正确实现状态更新accumulation_steps = 4 # 累积4个批次的梯度# 累积梯度# 每 accumulation_steps 步更新一次权重train_step.accum_grads = [tf.zeros_like(g) for g in gradients] # 重置累积梯度。原创 2025-05-01 15:44:39 · 1840 阅读 · 0 评论 -
Python FastAPI库【Web 框架】全面解析与实战指南
FastAPI是一个现代化的高性能 Python Web 框架,专为构建API(应用程序编程接口)而设计。它以简洁的语法、强大的类型系统、异步支持及自动化文档生成能力著称,适用于开发高效、可扩展且易于维护的 Web 服务。detail="账户余额不足",原创 2025-04-28 08:30:00 · 1120 阅读 · 0 评论 -
Python shiv工具简介与使用指南
Shiv以轻量化、高便携性重构了Python应用分发范式,尤其适合工具链封装、微服务部署等场景。尽管对C扩展支持有限,但其设计简洁性(对比PyInstaller等重型方案)使其成为中小型项目分发的理想选择。对于纯Python应用,它近乎完美地平衡了效率与易用性。进一步实践可参考官方文档或Django集成案例。原创 2025-06-18 08:01:11 · 268 阅读 · 0 评论 -
Python PyData【数据处理生态技术栈】简介
PyData 不是单一的工具,而是一个围绕 Python 构建的、协作紧密的。原创 2025-06-12 08:26:44 · 1075 阅读 · 0 评论 -
Python jieba库简介
专为处理中文文本设计。它结合了基于规则与统计的分词方法,支持精确模式、全模式和搜索引擎模式三种分词策略,广泛应用于中文自然语言处理(NLP)任务。的分词能力和扩展功能,可高效处理中文文本的复杂结构,为后续NLP任务奠定坚实基础。(中文意为“结巴”)是。原创 2025-06-03 12:00:28 · 1157 阅读 · 0 评论 -
Python aiohttp 全面指南:异步HTTP客户端/服务器框架
aiohttp是一个基于 Python asyncio 的异步 HTTP 客户端/服务器框架,专为高性能网络编程设计。异步 HTTP 客户端(类似异步版 requests)异步 HTTP 服务器(类似异步版 Flask/Django)完整的 WebSocket 支持高效的连接池管理高效客户端:用于高性能爬虫、API调用轻量级服务器:构建高性能Web服务和APIWebSocket支持:实现实时双向通信连接池管理:优化资源利用率。原创 2025-06-03 09:46:17 · 1315 阅读 · 0 评论 -
深入解析:构建高性能异步HTTP客户端的工程实践
协议演进跟踪:及时适配HTTP/3等新标准生态整合:与Service Mesh、API Gateway等基础设施深度集成可观测性建设:构建多维度的监控告警体系混沌工程实践:定期进行故障注入测试通过将上述实践方案与具体业务场景结合,并建立持续的性能优化机制,可构建出具备企业级可靠性的异步通信系统。建议每季度进行全链路压测,结合A/B测试持续验证优化效果。原创 2025-05-16 14:17:48 · 630 阅读 · 0 评论 -
Python常见语法错误91问及解决办法
Python常见语法错误91问及解决办法。原创 2025-05-08 09:34:08 · 1286 阅读 · 0 评论 -
由浅入深谈Python书写规范
函数参数排列顺序:位置参数 → 默认参数 → 可变参数 → 关键字参数函数定义与调用时保持参数对齐# 正确示例method,url,data=None,**kwargs):"""发送HTTP请求"""pass# 调用时保持对齐'GET',类方法第一个参数必须是self类方法之间用空行分隔继承类列表中的基类应该按从最抽象到最具体的顺序排列passprint(f"原创 2025-05-07 16:15:57 · 1221 阅读 · 0 评论 -
Python Streamlit 交互式报表开发指南
key=key# 使用示例click_data = st_custom_component("点击我")st.write(f"最后点击时间戳:"label" : label } , key = key) # 使用示例 click_data = st_custom_component("点击我") if click_data : st . write(f"最后点击时间戳: {原创 2025-05-05 11:15:10 · 1068 阅读 · 0 评论 -
祝贺Python scikit-learn 【机器学习库】全面讲解 入选【Python领域内容榜 第四名】
同时祝劳动节快乐,劳动最光荣!原创 2025-05-01 14:47:53 · 768 阅读 · 0 评论 -
Python 动态验证码识别技术实现与分析
混合注意力机制提升特征选择能力多阶段动态噪声消除算法端到端的序列识别架构工业级部署优化方案。原创 2025-04-26 07:28:17 · 984 阅读 · 0 评论 -
Python Transformers库【NLP处理库】全面讲解 入选【全站综合热榜第二】并登上CSDN首页
于2025年4月24日入选全站综合热榜第二,并登上CSDN首页,感谢大家的支持原创 2025-04-25 14:36:56 · 429 阅读 · 0 评论 -
Flask 请求数据获取方法详解
基础场景:直接使用。复杂场景:结合流式处理、异步操作或第三方库扩展功能。安全优先:始终验证输入、限制资源、防范常见攻击。通过合理设计数据流和错误处理机制,可以构建出高效、健壮的 Web 应用。原创 2025-04-25 05:51:46 · 1535 阅读 · 0 评论 -
Windows Server 环境下使用 Nginx 部署 Flask 应用详细指南
通过以上步骤, Flask 应用将在 Windows Server 上以高可靠性的方式运行,并通过 Nginx 实现高效反向代理和静态资源加速。原创 2025-04-24 08:30:00 · 1060 阅读 · 0 评论 -
Python 与 Java 互操作技术详解
轻量级调用:子进程或文件交换。深度集成:JPype(Python 调 Java)或 Py4J(双向调用)。分布式系统:REST API 或 gRPC。原创 2025-04-06 08:00:00 · 1041 阅读 · 0 评论 -
Python 自动化运维指南
Python 在自动化运维(DevOps)中扮演着重要角色,通过丰富的第三方库和框架,可以高效完成。原创 2025-03-31 10:45:00 · 1060 阅读 · 0 评论 -
Python调用JAR包的类和方法详细指南
通过以上方法,可以在Python中灵活地调用JAR包中的Java类和方法,实现Python与Java的互操作。根据具体需求选择合适的方法,并注意资源管理和性能优化。:确保系统已安装Java Runtime Environment (JRE)或Java Development Kit (JDK)JPype是一个Python库,允许Python代码调用Java类。PyJNIus是另一个Python与Java交互的库。:需要调用的Java类必须已打包为JAR文件。:在Java中调用Python代码。原创 2025-04-01 08:30:00 · 1110 阅读 · 0 评论 -
Python微信自动化库使用详解
itchat是一个基于微信网页版的 Python 库,支持个人微信账号的自动化操作,如登录、发送消息、接收消息等。wxpy是基于itchat的封装库,提供了更加简洁的 API,适合快速开发微信机器人。wechatpy是一个微信公众平台和微信企业号的 Python SDK,支持微信公众号和企业号的开发。wxauto是一个基于 Windows 操作系统的微信客户端自动化库,通过模拟用户操作(如鼠标点击、键盘输入等)来实现微信的自动化操作。库名称支持平台微信类型依赖项注意事项itchat跨平台个人微信。原创 2025-03-18 08:00:00 · 1179 阅读 · 0 评论 -
Python 自动化表单填写详解
Selenium是一个功能强大的浏览器自动化工具,支持多种浏览器(如Chrome、Firefox、Edge等)。它可以模拟用户操作,如点击按钮、填写表单、处理JavaScript动态内容等。Playwright是一个现代化的浏览器自动化工具,支持Chromium、Firefox和WebKit浏览器。它比Selenium更高效,API也更丰富。requests是一个HTTP库,用于发送HTTP请求。是一个HTML解析库,用于提取网页中的数据。结合两者可以实现简单的表单提交。是一个基于requests和。原创 2025-03-23 09:00:00 · 1279 阅读 · 0 评论 -
Python 网络编程详解
Python提供了丰富的库和工具来支持网络编程,从低级别的socket到高级别的requests和websockets,开发者可以根据需求选择合适的工具。通过合理的异常处理、资源管理和性能优化,可以构建高效、稳定的网络应用程序。原创 2025-03-28 08:30:00 · 1072 阅读 · 0 评论 -
Python中实现Microsoft Office自动化方案对比
需要完全控制Office应用程序(如打开/保存文件、执行VBA宏等)原创 2025-03-27 08:30:00 · 600 阅读 · 0 评论 -
Python 数据库自动化操作指南
本指南详细讲解如何使用 Python 操作 MySQL、Oracle 和 Microsoft SQL Server 数据库,涵盖常用库、基础操作、高级功能及完整代码示例。执行 SQL3. 高级功能事务管理二、Oracle 操作详解1. 常用库cx_Oracle(官方推荐)安装:依赖:需安装 Oracle Instant Client2. 基础操作连接数据库执行 SQL3. 高级功能调用存储过程三、Microsoft SQL Server 操作详解1. 常用库原创 2025-03-26 08:15:00 · 1709 阅读 · 0 评论 -
Python XML 自动化处理全攻略
Python 标准库,轻量级,适合基础操作。lxml第三方高性能库,支持 XPath、XSLT 和 Schema 验证。标准库实现,适合处理大型 XML 或事件驱动解析。辅助工具库xmltodict(XML ↔ 字典)、untangle(XML → Python 对象)等。原创 2025-03-25 08:00:00 · 656 阅读 · 0 评论 -
基于Flask的在线考试系统完整代码
这个系统可以作为在线考试的基础框架,根据具体需求添加更多高级功能(如防作弊监控、题目分类、试卷生成策略等)。原创 2025-03-15 12:02:48 · 656 阅读 · 0 评论 -
Flask实现WSGI请求处理流程及其完整代码实现
通过这种架构设计,Flask 在保持简洁 API 的同时,通过 Werkzeug 实现了符合 WSGI 标准的高性能请求处理流水线,开发者无需关注底层协议细节即可构建高效 Web 应用。通过这个实现,Flask完整遵循WSGI协议,实现了从HTTP请求解析到响应生成的全流程处理,同时保持了框架的灵活性和易用性。Web服务器(Nginx/Apache)监听到HTTP请求后,将请求转发给WSGI服务器(uWSGI/Gunicorn)WSGI服务器将响应转换为HTTP响应报文,通过Web服务器返回给客户端。原创 2025-03-14 22:21:56 · 1266 阅读 · 0 评论 -
Python代码调试方法集锦
简单调试: 使用print或pdb。图形化调试: 使用 PyCharm 或 IntelliJ IDEA。生产环境调试: 使用logging。原创 2025-03-08 20:56:53 · 1131 阅读 · 0 评论 -
Python的几种HTTP认证方法
摘要认证比基本认证更安全,因为它不通过网络明文传输密码。# 使用HTTPDigestAuth选择哪种认证方式取决于具体场景需求和后端API的要求。基本认证和摘要认证是HTTP原生支持的,而令牌和OAuth 2.0认证则通常用于更复杂的场景,如API调用。对于令牌和OAuth 2.0,需要额外的库来帮助管理认证流程。相关博文汇编:Python进行HTTP认证:Basic Auth和Digest Authpython实现http摘要认证鉴权python http 身份认证简介。原创 2025-03-09 10:00:00 · 622 阅读 · 0 评论 -
Python 加解密、Base64编解码算法汇编
在Python中实现加密解密算法有多种方式,包括使用内置库如cryptography、hashlib、base64等,以及使用简单的算法如AES、DES等。下面我将介绍几种常用的加密解密方法。cryptography是一个强大的加密库,支持多种加密算法,包括对称加密(如AES)和非对称加密(如RSA)。安装cryptography(1)AES对称加密解密示例(2)SM4加密解密示例SM4是中国国家标准的对称加密算法,类似于AES。下面是一个使用。原创 2025-03-08 09:52:18 · 1359 阅读 · 0 评论 -
Python Url地址截取方法
在Python中,如果你想从HTTP地址(通常是一个URL)中提取信息,比如协议(http或https)、主机名(域名或IP地址)、路径等,你可以使用模块中的urlparse函数。下面是如何使用urlparse。原创 2025-03-07 19:02:01 · 575 阅读 · 0 评论 -
Python在实际工作中的运用-提取Pdf文件内容
以下案例主要用到 pdfplumber 库:它是一个纯 Python 第三方库,适合 python 3.x 版本,通常用来查看pdf各类信息,能有效提取文本、表格,但不支持修改或生成pdf,也不支持对pdf扫描件的处理。原创 2025-03-04 14:08:50 · 530 阅读 · 0 评论 -
Python在实际工作中的运用-指定目录内所有Excel文件转CSV
这篇博文,关于Excel转Csv在实际处理过程中,感觉略显繁复,觉得再此案例中是否可以采取更简洁的代码完成此项工作,思路如下:首先可以通过遍历得到指定目录下所有的Excel文件列表,然后再逐个将列表内的Excel文件转换为CSV保存到同一目录下即可。原创 2025-02-28 23:27:28 · 611 阅读 · 0 评论 -
Python在实际工作中的运用-合并XLSX表格的新方法
做了一段时间表格合并后,发现对于行数比较少的表格采用此方法可以非常高效的完成数据合并,但是数据量较大时,比如达到单个工作表几十万行时速度就会变慢甚至死机,结合《本脚本只需要设置好file_path_name参数,运行脚本即可得到合并后的表格。原创 2025-02-27 16:12:54 · 785 阅读 · 0 评论 -
Python在实际工作中的运用-通用格式CSV文件自动转换XLSX
继续上篇我们对特定的CSV实现了快速转换XLSX的目标,但是运行Py脚本前还是需要编辑表格创建脚本和数据插入脚本,自动化程度很低,实用性不强,为了继续改进工作,实现输入CSV文件路径即可自动适配自动完成转换。现将改进的脚本发出来,共同交流学习。2、只需将CSV文件路径(含文件名和扩展名)设置到file_path_name变量即可。4、转换的XLSX文件,字段名是自动命名的,请自行修改为自己的表头。1、本脚本适合字段之间用空格分隔或者用逗号分隔的CSV文本。3、SQlite是中间库,转换完成后建议删除。原创 2025-02-26 15:36:35 · 1423 阅读 · 0 评论 -
Python在实际工作中的运用-CSV无损转XLSX的几个方法
相信工作时间较长时间的“表哥们”都遇到过需要对CSV或者TXT文件进行处理的事情,如果CSV或者TXT文件中出现像身份证号码这类超过15个字符的数据时,如果用Excel打开并保存将导致数据被强制转为科学计数法,这对数据的正确性来说简直就是灾难。原创 2025-02-24 15:30:42 · 389 阅读 · 0 评论 -
Python在实际工作中的运用-基础操作
本文将深入探讨 Python 中的文件操作以及 os 模块的各种功能,包括文件的打开、读取、写入、关闭,目录的创建、删除、遍历等,同时还会涉及到一些相关的高级主题,如文件指针操作、文件权限管理等。os.walk(path) 目录树生成器,生成一个三组 (dirpath, dirnames, filenames)os.mkdir(path [, mode = 0777 ] ) =0777])=0777]) 创建目录。os.rmdir(path) 移除空目录,不能删除有文件的目录。原创 2025-02-20 11:08:52 · 1552 阅读 · 0 评论 -
Python在实际工作中的运用-Excel数据统计和数据分析
说起Excel数据统计和数据分析,这也是Excel的强项,那为什么还要用python呢!我认为主要原因还是和使用场景有关,在需要进行重复性的、自动化的出具数据统计和分析报表方面,采用python来完成还是比较适合的。在开始前我们需要首先认识下DataFrame,它是Pandas库中的一个核心数据结构,是一个二维标签化的数据结构,可以认为它是一个Excel表格或者SQL表,具有行标签和列标签。案例1:分组统计 DataFrame.groupby([by, axis, level, …原创 2025-02-19 14:57:23 · 696 阅读 · 0 评论 -
Python在实际工作中的运用-拆分Excel表格
每次遇到表格按地区、按行数进行拆分都特别麻烦,每次都搞的头昏眼花,还容易出错,现在有了Python实在是各位“表哥”们的福音,下面我们就按行数和sheet两种场景来说明吧。首先需要安装 openpyxl 和 pandas。按sheet拆分.py。原创 2025-02-19 12:02:58 · 771 阅读 · 0 评论