参考文章: https://mp.weixin.qq.com/s/xN8NdEltVIdMdt50N9FftA
可解释的重要性:


可解释的分类:


特征归因(FEATURE ATTRIBUTION):
我们一般需要去寻找和决策相关的输入特征,输出的结果被称为特征图(attribution map)。特征归因方法同样可以被分为好几类。




(我感觉这个方法可以作为测试实验,比如可解释出某一个feature的重要性比较高,在做测试实验的时候我们可以往这个user的某个模态加入扰动进而验证模型推断的有效性)

信息瓶颈用于可解释:
Fine-Grained Neural Network Explanation
