深度学习基础:可解释性

参考文章: https://mp.weixin.qq.com/s/xN8NdEltVIdMdt50N9FftA

  • 可解释的重要性:

  • 可解释的分类:

  • 特征归因(FEATURE ATTRIBUTION):

我们一般需要去寻找和决策相关的输入特征,输出的结果被称为特征图(attribution map)。特征归因方法同样可以被分为好几类。

(我感觉这个方法可以作为测试实验,比如可解释出某一个feature的重要性比较高,在做测试实验的时候我们可以往这个user的某个模态加入扰动进而验证模型推断的有效性)

  • 信息瓶颈用于可解释:

Fine-Grained Neural Network Explanation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值