摘要:
立体视觉是利用同一场景在不同姿态下获取的两幅影像得到空间场景三维信息,进而重建立体场景的一门学科,视差估计则是立体视觉的基础。本文在双目立体视觉的基础上重点研究讨论了空间域与频率域两类视差估计算法,并进行了一系列实验。论文完成的主要工作与创新点如下:1.简要总结立体视觉的历史及发展趋势;详细论述了视差估计在立体视觉中的意义,重点介绍了视差理论、常见视差估计算法、立体视觉中基本约束条件以及立体视觉算法通用框架,为后续研究打下基础。2.针对传统基于逐像素的全局算法误匹配率较高,低特征区域误差较大的问题,提出了一种改进的基于邻域自适应加权视差校正的图像分割视差估计算法。算法首先采用Mean-Shift算法对图像进行分割,并通过改进的邻域自适应加权方法校正初始视差图,之后对各分割片段采用RANSAC算法进行二次曲面拟合,最后采用结合全局匹配得分迭代假设的方法优化低特征区域,得到最终视差图。实验证明,与传统算法相比,该算法可以有效降低图像的误匹配率。3.重点研究了基于相位相关的频域视差估计算法。文章以傅里叶变换性质为基础,讨论了边缘效应以及振铃效应产生的原因,并以此为依据对已有算法提出改进,首先对原始图像采用Blackman-Harris窗函数做滤波处理,对求得的互功率谱矩阵做中值滤波减弱其噪声的影响,之后结合奇异值分解方法对得到的特征向量采用Hough变换检测相位角的斜率,求解出两幅图像的视差。实验结果表明,本文算法可以有效的估计出子像素级精度视差。
展开