matlab 单尾检验,T检验中,单尾和双尾,成对、等方差和异方差的差异

在数据检验中,正态分布下通常选择参数方法如T检验。双尾检验用于不确定参数大小的情况,而单尾检验强调方向性,如预期效果。方差相等简化了检验过程,但可通过检验或图表判断。单尾检验适用于有明确方向预期的情境,如比较不同组间差异或验证预测方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做数据检验的时候,通常先要检验数据是否正态,因为正态分布下有非常详尽的理论基础,用起来非常方便,如果数据不服从正态分布怎么办呢?此时就可以用非参数检验,是基于秩(其实就是序号啦)的,也有很多种方法。你可能会问:不管数据是否正态,是否都能用非参数检验呢,其实也是可以的,不过正态下用非参数检验的话,检验功效就不如参数方法了。如果你不知道什么是检验功效的话就去查一查概率统计的课本。为了有较高的检验功效,非正态数据就用非参数方法,正态数据就用参数方法。

至于该做双尾还是单尾检验,是可以根据问题的实际意义进行判断的,如果不好判断就画画散点图,看一个是否明显在另一个之上或之下。

至于方差的要求那是因为在正态分布下,等方差会省去很多麻烦,所以通常假定方差相等,相关的检验理论也非常完善。如果你不知道方差到底是否相等,可以做检验,最直观的方法就是绘制箱线图,或计算样本标准差。

实际上是: 当所要比较的两个样本统计量的总体参数事先无法肯定哪个大或者哪个小时,就要用双尾检验,所得到的检验结果取P双尾值。否则就取P单尾值。单尾检验强调的是方向性。

举个例子:

例子1:在甲、乙两地随机抽取两个样本,他们的身高平均数分别为x1和x2,现在要对x1和x2进行检验,由于事先无法确定两个样本均数所在的总体样本均数哪个大哪个小,所以要用双尾检验。

例子2:一批17岁男生测验的身高平均数x1,到18岁时再进行测验得到平均数x2,若要对x1和x2进行检验,因为同一批人的18岁身高平均值不可能比17岁的还低,所以这里要用单尾检验。

实际上我们前面所说的T检验的例子都是无法确定两样本总体参数谁大谁小,所以都取P双尾值

上面是一个找到的资料,不知道对不对。

**********************

还有一个百度上面的:

单尾和双尾取决于你的H0。设两个样本是X1,X2,如果H0是X1=X2,那么做双尾检验,因为不确定X1比X2大还是小。如果如果H0是X1>X2或X1

************************

还有一个相关的:

通常假设检验的目的是两总体参数是否相等,以两样本均数比较为例,

无效假设为两样本所代表的总体均数相等;

备择假设为不相等(有可能甲大于乙,也有可能甲小于乙)既两种情况都有可能发生.

而研究者做这样的假设说明(1)他没有充分的理由判断甲所代表的总体均数会大于乙的或甲的会小于乙的;(2)他只关心甲乙两个样本各自所代表的总体均数是否相等?至于哪个大不是他关心的问题.这时研究者往往会采用双侧检验.

如果研究者从专业知识的角度判断甲所代表的总体均数不可能大于(或小于)乙的,这时一般就采用单侧检验.

例如:要比较经常参加体育锻炼的中学男生心率是否低于一般中学男生的心率,就属于单侧检验.因为根据医学知识知道经常锻炼的中学男生心率不会高于一般中学男生,因此在进行假设检验时应使用单侧检验.

单尾检验和双尾检验的区别在于他们拒绝H0的标准。单尾检验允许你在差异相对较小时拒绝H0,这个差异被规定了方向。另一方面,双尾检验需要相对较大的差异,这个差异不依赖于方向。

所有的研究者都同意单尾检验与双尾检验不同。一些研究者认为,双尾检验更为严格,比单尾检验更令人信服。因为双尾检验要求更多的证据来拒绝H0,因此提供了更强的证据说明处理存在效应。另一些研究者倾向于使用单尾检验,因为它更为敏感,即在单尾检验中相对较小的处理效应也可能是显著的,但是,它可能不能达到双尾检验的显著性要求。

那么我们是应该使用单尾检验还是双尾检验??通常,双尾检验被用于没有强烈方向性期望的实验研究中,或是存在两个可竞争的预测时。例如,当一种理论预测分数增加,而另一种理论预测分数减少时,应当使用双尾检验。应当使用单尾检验的情况包括在进行实验前已经有方向性预测,或强烈需要做出方向性预测时。

参考资料:

http://www.ilovematlab.cn/thread-162174-1-1.html

http://wiki.mbalib.com/wiki/显著性检验

赞过:

赞 正在加载……

493eda420ced32d95a5362678c212e10?s=80&d=identicon&r=G

Bioinformatics

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值