地理信息系统(GIS)开发全攻略

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:地理信息系统(GIS)是融合计算机技术与地理数据以处理空间信息的系统。本文档深入解析了GIS项目开发的全流程,包括需求分析、数据准备、数据库设计、算法应用、软件开发、地图服务、可视化、测试部署以及项目维护与更新。涉及到的关键技术包括Dijkstra最短路径算法、多种GIS库和API等。本文档旨在提供GIS项目开发的完整指南,帮助读者从零开始掌握GIS开发的每个步骤。
GIS项目开发详细文档

1. GIS项目需求分析

GIS项目背景与目标定义

地理信息系统(GIS)项目通常涉及复杂的空间数据管理和分析,需求分析阶段是整个项目成功的基石。在这一阶段,首先要明确项目的背景与目标,涵盖项目的业务需求、技术需求以及用户需求。

业务需求分析

业务需求分析旨在界定GIS项目需要解决的实际问题,包括但不限于:

  • 收集和分析项目相关的数据来源。
  • 确定项目的主要目标用户。
  • 理解用户的业务流程和操作习惯。

技术需求分析

技术需求分析则是从技术角度出发,包括:

  • 评估可用技术,选择合适的技术栈。
  • 确定GIS平台,如WebGIS、桌面GIS等。
  • 规划数据存储和处理方式,例如使用哪种类型的GIS数据库。

用户需求调研

用户需求调研着重于从用户的角度了解他们对GIS系统的期望,包含:

  • 通过问卷调查、访谈等方式收集用户意见。
  • 编写用例,描述用户与系统的交互。
  • 制作原型并获取用户反馈,以不断调整和完善需求。

通过上述步骤,项目团队能够形成一个全面的需求文档,为GIS项目的设计、开发和部署提供清晰的指导。

项目目标设定

在需求分析阶段结束时,项目团队应明确设定项目目标,这些目标应该是SMART的,即具体(Specific)、可测量(Measurable)、可实现(Achievable)、相关性(Relevant)和时限性(Time-bound)。项目目标的设定对后续的项目规划和管理具有重要指导意义。

  • 具体性 :目标需要明确指出GIS系统需要完成的具体任务。
  • 可测量性 :目标应当可以量化评估,以便于追踪进度。
  • 可实现性 :目标必须在现有资源和条件下可达成。
  • 相关性 :目标应与组织的长远目标和战略方向保持一致。
  • 时限性 :为每个目标设置明确的时间框架。

确立了这些需求和目标后,项目团队就可以进入GIS项目的下一阶段——数据采集与处理。这一环节将涉及到真实世界的地理数据的收集和初步处理,为后续的数据分析和系统开发提供原料。

2. GIS数据采集与处理

2.1 GIS数据采集技术

2.1.1 数据采集工具和方法

在GIS项目中,数据采集是至关重要的一步,它直接关系到GIS系统质量的高低。随着科技的进步,数据采集的工具和方法越来越多样化,包括但不限于遥感技术、全球定位系统(GPS)、地理信息系统(GIS)软件等。

遥感技术在数据采集中的应用包括卫星遥感和航空遥感。卫星遥感通过卫星携带的传感器对地表进行成像,获取地表信息。航空遥感则通常搭载在飞机或无人机上,可以获取更高分辨率的图像数据。遥感数据可以用于制作地形图、土地利用图、植被分布图等。

GPS技术在GIS数据采集中的主要作用是提供精确的地理位置信息。在野外,通过GPS设备可以记录特定地理位置的坐标,这对于路径追踪、位置标记等应用来说非常重要。此外,随着智能手机的普及,利用手机内置的GPS功能,进行数据采集也变得简单便捷。

GIS软件不仅可用于数据的采集,也用于数据的编辑、分析和展示。在采集阶段,GIS软件可以用来设计数据采集表单、进行实地调查数据的录入,以及与GPS设备的数据同步。例如,可以使用ArcGIS软件进行实地调查,通过Collector for ArcGIS应用将数据直接采集到云端。

2.1.2 数据质量控制和预处理

采集到的GIS数据质量直接决定了最终分析结果的可靠性。因此,数据采集之后,进行质量控制和预处理是至关重要的。数据质量控制主要包含数据完整性检查、数据准确性检验、数据一致性检查等。

完整性检查主要确保所有必需的数据都被采集,不存在遗漏。准确性检验则需要比较采集的数据与实际的地理实体,确保数据反映真实情况。一致性检验是检查数据在不同时间、不同地点的一致性,以及与现有数据的一致性。

预处理则是指在数据进入数据库或被进一步分析之前,需要进行的一些基础处理。例如,去除重复数据、修正错误数据、插值填补缺失数据。预处理的数据将更易于管理和分析。在某些情况下,还可能需要进行数据格式转换,以符合特定GIS软件的要求。

2.2 GIS数据处理方法

2.2.1 空间数据编辑与分析

空间数据编辑是GIS数据处理的重要组成部分,它涉及对空间数据的增加、删除、修改等操作。GIS软件通常提供了丰富的空间数据编辑工具,使用户能够方便地对地理信息进行编辑。比如,在ArcGIS中,可以使用编辑工具栏对矢量数据的点、线、面进行编辑,进行合并、分割、裁剪等操作。

空间数据分析是GIS中的核心功能,包括测量、叠加分析、缓冲区分析等。测量工具可以用来计算两点间的距离、面积、角度等。叠加分析能够结合多个图层的信息,提取有价值的新信息。缓冲区分析用于生成与特定地理要素相关联的区域,可以用来分析服务范围、影响区域等。

2.2.2 数据转换与整合技术

在不同的GIS项目和应用场景中,数据格式可能会有所不同。因此,数据转换是一个重要环节。常见的GIS数据格式有Shapefile、GeoJSON、KML等。数据转换工具如GDAL/OGR库提供了强大的数据格式转换功能。例如,可以将Shapefile格式转换为GeoJSON格式,以便在Web应用中使用。

数据整合则涉及将来自不同来源、不同格式的空间数据整合到一个系统中,这需要解决数据之间的参照关系、数据冲突等问题。一个有效的数据整合策略包括确定整合模式(如垂直整合或水平整合)、数据清洗、数据关联、数据同步等。

2.2.3 数据存储和管理策略

数据存储和管理是GIS数据处理的后期阶段,涉及数据的存储结构、存储方式以及数据访问和维护的策略。

数据存储结构一般分为文件系统和数据库系统。文件系统简单易用,但当数据量大时,管理起来比较困难。数据库系统如PostgreSQL/PostGIS、MySQL、Oracle Spatial等,提供更为复杂的数据管理功能,适合大规模的数据处理。数据库系统可以有效地存储空间数据,并提供数据查询、更新、检索和管理的功能。

数据访问策略则关注如何高效地访问和查询GIS数据。空间索引的建立是一个重要的策略,它能够大幅提高空间查询的效率。常见的空间索引技术有四叉树索引、R树索引、格网索引等。

为了实现数据的持久化存储,还需制定数据备份和恢复策略。定期备份、增量备份和差异备份是常见的备份策略。数据恢复策略则用于在数据丢失或损坏时,能够迅速恢复数据到之前的状态。

在这一章节中,我们详细探讨了GIS数据采集与处理的各个方面,从数据采集的工具和方法到数据的编辑与分析,再到数据的存储和管理策略,逐层深入地分析了GIS数据处理的关键技术和方法。接下来,我们将进入第三章,探讨GIS数据库设计与实现的相关内容。

3. GIS数据库设计与实现

3.1 GIS数据库概念与结构

3.1.1 数据库模型和数据类型

数据库模型是定义数据结构、操作数据以及数据之间关系的抽象概念。在GIS(地理信息系统)中,常用的数据库模型包括矢量模型和栅格模型。矢量模型擅长表示精确的几何形状如点、线、面等,它通过坐标和拓扑关系来存储空间信息,适用于需要精确测量和分析的应用场景。而栅格模型则是通过规则的格网来表达地理空间数据,每个网格单元包含具体的属性值,适合模拟连续的地理现象。

GIS数据库支持多种数据类型,其中包括空间数据和非空间数据。空间数据类型主要包括点(Point)、线(LineString)、多边形(Polygon)等基本几何数据类型,以及复合几何数据类型如MultiPoint、MultiLineString和MultiPolygon。这些数据类型能够有效地表达地理实体的位置、形状和大小。非空间数据类型则包括标准的数据库数据类型,如整型、浮点型、字符型和日期时间型,它们通常用于存储非空间属性信息。

3.1.2 空间数据库设计原则

GIS数据库设计应遵循一些核心原则以确保数据的有效性、一致性和性能。首先,数据模型应该以现实世界为依据,数据结构应该反映现实世界的地理实体及其关系。其次,空间数据和属性数据之间需要建立紧密的联系,通常通过空间标识符(如唯一的ID)将它们关联起来。此外,考虑到GIS数据通常具有很大的数据量和复杂性,应该重视数据的标准化和规范化来减少数据冗余,提高查询效率。

GIS数据库设计时还需要考虑数据的尺度和精度。尺度决定了数据的详细程度,而精度则涉及到数据的准确性。通常情况下,尺度越大,数据的精度需要越高。此外,设计者需要预先考虑数据的扩展性,以便于未来添加新数据或进行数据维护。

3.2 GIS数据库实现技术

3.2.1 数据库管理系统选择

选择合适的数据库管理系统(DBMS)对于GIS项目至关重要。DBMS的选择会直接影响到GIS数据库的性能、可扩展性和维护成本。目前,市场上有许多支持空间数据管理的数据库管理系统,包括商业和开源两种类型。

商业数据库如Oracle Spatial、Microsoft SQL Server Spatial和IBM DB2 Spatial Extender提供了强大的空间数据分析功能和良好的性能。它们通常拥有较为完善的工具链,能够在大规模数据集上提供快速查询和分析服务。而开源数据库如PostgreSQL/PostGIS和MySQL/MySQL Spatial在成本上具有优势,且有着活跃的社区支持和不断发展的功能集。

3.2.2 空间索引和查询优化

空间索引是GIS数据库中提升查询性能的关键技术。有效的空间索引可以显著加快空间数据的检索速度,尤其是在涉及大量数据查询和复杂的空间关系计算时。常见的空间索引技术包括R树、四叉树和格网索引等。其中,R树因其在处理大量空间数据查询时的高效性而被广泛使用。

查询优化则涉及到编写高效的SQL语句,合理使用空间函数以及索引。在进行空间查询时,需要注意选择合适的空间操作符和函数,如ST_INTERSECTS、ST_WITHIN等,这些空间操作符和函数能够高效地进行空间数据比较和计算。同时,根据查询内容和数据库特性,可以采用诸如查询重写、分批处理等策略进一步优化查询性能。

-- 示例SQL查询语句
SELECT * FROM gis_table
WHERE ST_WITHIN(gis_shape, ST_Buffer(ST_SetSRID(ST_Point(10, 20), 4326), 100));

在上述SQL语句中,使用了ST_WITHIN空间函数来查询在某一点周围100单位距离内的地理实体。查询语句有效地利用了空间索引,加速了查询过程。

3.2.3 数据库的备份与恢复策略

数据库的备份与恢复是保证数据安全性和业务连续性的关键措施。GIS数据库往往存储有大量重要的空间数据,一旦发生数据丢失或损坏,可能会对业务产生灾难性的影响。因此,在GIS数据库设计和实现阶段就需要制定周全的备份与恢复计划。

备份策略应考虑数据的重要性、数据量大小以及备份频率等因素。通常,GIS数据库需要定期执行全备份,并根据数据变更频率执行差异备份和增量备份。备份可以通过多种方式进行,如直接数据文件备份、使用数据库提供的备份工具或利用第三方备份软件。

恢复策略需要确保在数据丢失或损坏的情况下,能够迅速将数据库恢复到最近的一致状态。恢复操作可能包括恢复最近的备份、应用事务日志以及执行必要的数据校验和完整性检查。

| 备份类型 | 频率 | 说明 |
| --- | --- | --- |
| 全备份 | 每周 | 完整备份所有数据 |
| 差异备份 | 每天 | 备份自上次全备份以来的变更数据 |
| 增量备份 | 每天 | 备份自上次任何备份以来的变更数据 |

在实际操作中,备份和恢复策略的制定和执行需要结合具体的业务需求和风险评估,并定期进行备份测试以验证恢复策略的有效性。

4. GIS算法应用

4.1 常用GIS算法概述

地理信息系统(GIS)中使用的算法多种多样,它们通常被用于数据查询、分析和空间决策支持。在GIS中,空间分析算法和路径分析算法是最为常见的两类算法。

4.1.1 空间分析算法

空间分析算法涉及对空间数据进行操作,以提取和分析地理信息。这些算法包括缓冲区分析、叠加分析和表面分析等。比如,缓冲区分析可用于识别特定地理要素周围的影响区域,而叠加分析能够合并多个数据层以发现它们之间的关系和模式。

graph LR
A[输入空间数据] --> B[定义分析参数]
B --> C[执行缓冲区分析]
C --> D[结果展示]
D --> E[分析结果应用于决策]

代码块示例和说明可以是使用Python的GDAL库进行缓冲区分析:

from osgeo import ogr

def create_buffer(input_layer, buffer_distance):
    driver = ogr.GetDriverByName('ESRI Shapefile')
    inDataSource = driver.Open(input_layer, 0)
    inLayer = inDataSource.GetLayer()
    outDriver = ogr.GetDriverByName('ESRI Shapefile')
    outDataSource = outDriver.CreateDataSource('buffer_layer.shp')
    outLayer = outDataSource.CreateLayer('buffer_layer', geom_type=ogr.wkbPolygon)

    spatial_filter = inLayer.GetSpatialFilter()
    inFeatureDefn = inLayer.GetLayerDefn()
    outFeatureDefn = outLayer.GetLayerDefn()
    for inFeature in inLayer:
        geom = inFeature.GetGeometryRef()
        geom_buffer = geom.Buffer(buffer_distance)
        outFeature = ogr.Feature(outFeatureDefn)
        outFeature.SetGeometry(geom_buffer)
        outLayer.CreateFeature(outFeature)
        outFeature = None
    inDataSource = None
    outDataSource = None

# 使用函数创建缓冲区
create_buffer('input.shp', 100)
4.1.2 路径分析算法

路径分析算法专注于计算地理空间中的最佳路径,用于物流规划、道路网络分析等。其中最著名的算法之一是Dijkstra算法,用于找到两个节点之间的最短路径。

4.2 Dijkstra最短路径算法详解

Dijkstra算法是图论中经典的单源最短路径算法。它能够找出从单一源点到所有其他节点的最短路径。

4.2.1 算法原理和实现步骤

Dijkstra算法的基本思想是:从源点出发,逐步拓展最短路径树,直至包含所有节点。每次选择距离源点最近的未被访问的节点作为当前节点,并更新当前节点邻接点的路径信息。

  1. 初始化所有节点的最短路径长度为无穷大,将源点的最短路径长度设置为0。
  2. 将所有节点标记为未访问,将源点标记为已访问。
  3. 对于每个未访问的节点,计算到达它的最短路径,并更新节点列表。
  4. 重复步骤3,直到所有节点都被访问。

以下是使用Python实现Dijkstra算法的代码示例:

import heapq

def dijkstra(graph, start):
    distances = {vertex: float('infinity') for vertex in graph}
    distances[start] = 0
    priority_queue = [(0, start)]
    while priority_queue:
        current_distance, current_vertex = heapq.heappop(priority_queue)
        if distances[current_vertex] < current_distance:
            continue
        for neighbor, weight in graph[current_vertex].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(priority_queue, (distance, neighbor))
    return distances

# 使用函数计算最短路径
graph = {
    'A': {'B': 1, 'C': 4},
    'B': {'A': 1, 'C': 2, 'D': 5},
    'C': {'A': 4, 'B': 2, 'D': 1},
    'D': {'B': 5, 'C': 1}
}
print(dijkstra(graph, 'A'))
4.2.2 算法优化和应用场景

Dijkstra算法可以通过多种方式进行优化,例如使用二叉堆优化优先队列,或者在稀疏图中使用斐波那契堆来降低算法的时间复杂度。它广泛应用于GIS中,如交通导航系统、城市规划以及网络通信设计等领域。优化路径算法可以提高算法效率,节省计算资源,适用于大规模地理数据的路径分析。

在本章节中,我们介绍了GIS算法的基本概念和应用。通过Dijkstra算法的实现,我们了解到算法在实际问题中的应用,如何通过编程来实现复杂的空间分析。在下一章节,我们将探讨GIS软件的定制开发流程。

5. GIS软件定制开发

5.1 软件开发流程和方法

5.1.1 需求分析与系统设计

需求分析阶段是软件定制开发的起点,此阶段的目的是为了确定软件要解决的问题和达成的目标。需求分析需要与客户进行充分的沟通,理解他们的业务流程、功能需求以及非功能需求如性能要求等。

接下来,在需求分析的基础上进行系统设计,它包括概要设计和详细设计。概要设计阶段确立系统的整体框架和模块划分,确定各个模块之间的关系和交互方式。详细设计则是将概要设计的具体化,它规定了每个模块的具体实现方式,设计类、接口和数据结构等。

系统设计时,也需要考虑系统的可扩展性、安全性和维护性,这些因素直接影响到软件的生命周期和未来升级的便利性。

5.1.2 编码标准和代码管理

在GIS软件定制开发过程中,编码是将设计转化为实际软件产品的重要环节。编码标准的制定有助于统一编程风格,提高代码的可读性和可维护性。常用的编码标准包括命名规则、注释规则、文件组织方式、代码模板等。

代码管理则是通过使用版本控制工具如Git来跟踪代码变更历史,管理多人协作开发的过程。良好的代码管理不仅能保证代码的整合性,还能在出现问题时快速回滚到稳定版本。

5.2 软件功能实现与用户界面设计

5.2.1 功能模块划分和实现

GIS软件的功能模块需要根据系统设计阶段确定的功能要求进行划分。功能模块的划分要考虑到复用性、独立性和耦合度。例如,GIS软件一般会包含数据管理、地图展示、空间分析、报告生成等模块。

模块的实现需要依赖于GIS相关编程接口,比如OGC(Open Geospatial Consortium)提供的各种服务接口。编码过程中,要严格遵循之前制定的编码标准,确保代码质量。

5.2.2 用户体验和界面美观度优化

GIS软件的用户界面设计要以用户为中心,考虑到易用性和美观性。界面设计应当简洁直观,使得用户能够快速上手并高效完成工作任务。

界面美观度的优化可以通过使用最新的前端技术,比如使用HTML5、CSS3以及JavaScript框架(如React或Vue.js),来实现流畅的交云体验和响应式布局。

graph TB
  A[开始定制开发] --> B[需求分析]
  B --> C[系统设计]
  C --> D[编码标准制定]
  D --> E[编码实现]
  E --> F[功能模块划分]
  F --> G[界面设计与用户体验优化]
  G --> H[软件测试]
  H --> I[软件部署]
  I --> J[系统维护与更新]

实例代码展示:

// 示例代码:使用Java进行简单的GIS数据查询功能实现
public class GISQueryService {

    // GIS查询方法
    public FeatureCollection queryFeatures(String layerName, Query query) {
        // 这里假设有一个GIS数据源管理器,用于管理不同的数据源
        GISDataSourceManager dataSourceManager = GISDataSourceManager.getInstance();
        // 获取指定图层的数据源
        GISDataSource dataSource = dataSourceManager.getDataSource(layerName);
        // 使用数据源执行查询
        return dataSource.queryFeatures(query);
    }
}

// 参数说明:
// layerName: 字符串,指定要查询的图层名称
// query: Query对象,包含查询条件

// 代码逻辑说明:
// 1. 获取GIS数据源管理器实例,用于访问各种GIS数据源
// 2. 根据图层名称获取对应的数据源实例
// 3. 使用数据源实例的queryFeatures方法根据查询条件执行查询
// 4. 返回查询结果,这里假设为FeatureCollection对象

通过上述代码,我们可以看到在GIS软件开发中,功能实现的一个简单例子,以及与之相关的参数和逻辑的解释。当然,在实际开发过程中,GIS数据查询功能要复杂得多,需要处理大量的数据和多样的查询条件。

通过精心的设计和高效的编码,结合美观的界面和良好的用户体验,可以创建出既专业又符合用户需求的GIS定制软件。

6. GIS地图服务与数据可视化

6.1 GIS地图服务实现

地理信息系统(GIS)地图服务是一种在线服务,它允许用户通过网络访问、查询和使用地理数据。地图服务通过互联网提供地图图片、数据流或功能,从而使各种GIS应用能够实现丰富的地理信息功能。这一部分将深入探讨WMS、WFS、WMTS服务,并提供一个地图服务配置和应用实例。

6.1.1 WMS、WFS、WMTS服务概述

  • Web Map Service (WMS) : 允许用户请求服务器上地理数据的地图图片,该图片是根据用户设定的范围和样式生成的。
  • Web Feature Service (WFS) : 提供一种方式,通过这种方式可以直接访问地理数据的特征信息,并能对其执行创建、更新、删除等操作。
  • Web Map Tile Service (WMTS) : 提供预先生成的地图图片瓦片,提高了数据传输效率,适用于地图缩放和滑动地图时的性能优化。

6.1.2 地图服务配置与应用实例

为了演示如何配置和应用这些服务,我们将使用开源GIS服务器GeoServer来创建一个地图服务。

# 安装GeoServer
sudo apt-get install geoserver

安装完毕后,通过以下步骤配置WMS服务:

  1. 访问GeoServer的Web界面。
  2. 创建一个新的工作区(Workspace)。
  3. 在该工作区下创建一个新的存储空间(Store),并配置数据源。
  4. 发布图层(Layer),并生成WMS服务URL。

假设我们已经配置了一个名为 World 的地图图层,WMS服务URL可能如下:

http://<server-ip>:8080/geoserver/wms?service=WMS&version=1.1.1&request=GetMap&layers=World&styles=&bbox=0,0,180,-90&width=720&height=360&srs=EPSG:4326&format=jpeg

通过以上URL,我们可以获取一个覆盖整个世界的地图瓦片。

6.2 GIS数据可视化技术

数据可视化是GIS的一个重要方面,它帮助用户理解数据的地理分布和相关性。在本节中,我们将讨论数据可视化工具和技术的选择,以及如何评估和改进数据可视化的效果。

6.2.1 可视化工具和技术选择

在选择数据可视化工具时,需要考虑如下因素:

  • 用户基础 : 选择一个容易学习和使用的工具,以便用户能够快速地创建和理解可视化。
  • 功能性 : 工具应提供多种图表类型、高级分析选项,以及定制化选项。
  • 互操作性 : 支持GIS数据格式,并能与其他GIS工具无缝集成。
  • 性能 : 高效的数据处理和渲染性能。

一些流行的GIS数据可视化工具包括:

  • QGIS : 开源的GIS软件,支持强大的插件体系。
  • ArcGIS Pro : ESRI出品的先进的地理信息系统软件。
  • Tableau : 商业化的数据可视化工具,适合生成交互式报告。
  • D3.js : 一个基于Web的JavaScript库,用于操作文档基于数据。

6.2.2 数据可视化效果的评估与改进

评估可视化效果的方法包括:

  • 清晰性 : 确保数据的关键信息一目了然。
  • 可读性 : 图形的大小、颜色和字体是否容易阅读。
  • 精确性 : 可视化是否准确反映了数据的特性。
  • 美观性 : 可视化是否吸引人,设计是否符合审美标准。

改进可视化效果通常涉及以下步骤:

  1. 收集反馈:从不同用户那里获取他们对当前可视化的看法。
  2. 分析性能:评估可视化工具在不同情况下的性能。
  3. 调整设计:根据收集到的信息调整颜色、布局和其他视觉元素。
  4. 测试新的可视化:实现改进,并通过用户的反馈循环来迭代优化。

可视化是与观众沟通数据信息的有效方式。一个成功的GIS可视化不仅需要展示正确的数据,还需要展示数据在何种程度上为决策提供支持。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:地理信息系统(GIS)是融合计算机技术与地理数据以处理空间信息的系统。本文档深入解析了GIS项目开发的全流程,包括需求分析、数据准备、数据库设计、算法应用、软件开发、地图服务、可视化、测试部署以及项目维护与更新。涉及到的关键技术包括Dijkstra最短路径算法、多种GIS库和API等。本文档旨在提供GIS项目开发的完整指南,帮助读者从零开始掌握GIS开发的每个步骤。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值