基于MFC的绘图软件开发:实现图元绘制与动态小球模拟

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本篇教程介绍了如何使用Microsoft Foundation Classes(MFC)创建一个绘图软件,该软件具有绘制基本图形和模拟小球运动的功能。MFC是微软的C++类库,简化了Windows应用开发。我们将学习如何利用MFC中的CDC类来绘制直线、椭圆、矩形和多边形,以及如何通过物理模拟和定时器控制小球的运动。此外,我们还将探索实现裁剪线段和平移图形的技术。这个项目不仅能帮助初学者掌握MFC编程,也是深入学习Windows程序设计和图形学的有效途径。 用mfc编写的绘图软件 实现画基本图元 还有小球运动

1. MFC绘图软件概述

MFC(Microsoft Foundation Classes)是一个用于Windows应用程序开发的C++库,它为开发者提供了一套封装好的类集合。在图形用户界面(GUI)的构建上,MFC提供了一套丰富的控件和类,使得开发者能够更加便捷地进行绘图操作和事件处理。

在MFC中进行绘图,主要通过设备上下文(DC)来实现。DC是一种抽象,它代表了一个能够用来在屏幕上绘制的环境。每一个可以显示的窗口都有一个与之对应的DC。通过与DC进行交互,开发者可以绘制各种图形,并且实现复杂的视觉效果。

使用MFC进行绘图软件开发,不仅可以提高开发效率,还可以通过继承和重写MFC类中的方法来实现高度自定义化的软件界面。本章将为读者展示MFC绘图软件的基本架构和主要组件,为后续章节的深入学习打下坚实的基础。

2. MFC CDC类绘图函数使用

MFC CDC类是用于设备上下文操作的类,提供了一系列绘图函数,让开发者可以在Windows环境下进行图形绘制。本章我们将对CDC类的绘图功能进行深入探讨。

2.1 CDC类绘图概述

2.1.1 CDC类的基本概念

CDC类作为MFC库中的一个核心类,代表了Windows GDI(图形设备接口)的封装。它为程序员提供了一系列方便的成员函数来处理各种图形输出。CDC类的作用是将抽象的绘图操作转化为具体的GDI函数调用。

2.1.2 CDC类的创建和初始化

CDC对象通常不是直接创建的,而是在设备上下文已经存在的情况下,通过某种形式的派生和封装来获得的。比如,可以在窗口的 OnPaint 函数中获取 CDC 对象指针,或通过 GetDC CClientDC 类等方式获取。

void CMyView::OnPaint()
{
    CPaintDC dc(this); // 在OnPaint中创建DC对象

    // 在这里可以使用dc进行绘制操作
}

2.2 CDC类基本绘图函数

2.2.1 设备上下文(DC)的理解

设备上下文(DC)是一个结构,它定义了一个图形对象的属性,如颜色、字体、位图、绘图模式等,以及GDI对象如画笔、画刷、字体和位图等。Windows GDI通过DC将图形输出到屏幕或其他设备。在MFC中,CDC类代表了DC的封装,提供了丰富的成员函数来操作DC。

2.2.2 常用绘图函数介绍

MFC CDC类封装了多种绘图函数,包括但不限于:

  • MoveTo LineTo :移动和画线。
  • Rectangle :画矩形。
  • Ellipse :画椭圆。
  • Polygon :画多边形。
  • Arc :画弧线。
  • Chord :画弦。
  • Pie :画饼。

2.2.3 颜色和画刷设置方法

为了绘制图形,我们需要设置颜色和画刷。在MFC中,这可以通过 SetTextColor SetBkColor 函数来设置文字和背景颜色,而 CBrush 类被用来创建画刷对象,并通过 SelectObject 函数将其选入设备上下文中。

CPen pen(PS_SOLID, 1, RGB(255, 0, 0)); // 创建一个红色的画笔
CBrush brush(RGB(0, 255, 0)); // 创建一个绿色的画刷

dc.SelectObject(&pen); // 选择画笔
dc.SelectObject(&brush); // 选择画刷

dc.Rectangle(10, 10, 100, 100); // 画一个矩形

以上代码示例展示了如何创建画笔和画刷,然后将它们选入到DC中,并使用DC画一个矩形。

在MFC中,创建绘图相关的对象时,资源管理非常重要,因为资源通常是有限的。这意味着必须在不再需要时释放这些对象,否则会造成内存泄漏。使用MFC的智能指针或对象作用域可以帮助管理这些资源。

以上是第二章的概览,接下来的章节将继续深入探讨如何使用MFC CDC类进行更复杂的图形绘制。

3. 基本图形绘制(直线、椭圆、矩形、多边形)

3.1 直线和椭圆的绘制技术

3.1.1 直线的绘制方法

在MFC中,直线是通过CDC类提供的 MoveTo LineTo 函数来绘制的。 MoveTo 函数用于设置起始点坐标,而 LineTo 则从该点开始绘制到指定的结束点坐标。

void CMyView::OnDraw(CDC* pDC)
{
    CDocument* pDoc = GetDocument();
    // 设置画笔颜色和宽度
    pDC->SetTextColor(RGB(0, 0, 0));
    pDC->SetBkMode(TRANSPARENT);
    pDC->SetPolyFillMode(WINDING);
    pDC->SetPen(::GetStockObject(BLACK_PEN));

    // 移动到直线的起始点
    pDC->MoveTo(10, 10); // 参数为起点的X和Y坐标
    // 绘制到结束点
    pDC->LineTo(200, 100); // 参数为终点的X和Y坐标
}

在这段代码中,我们首先设置了画笔的颜色和模式,然后调用 MoveTo 将起始点设置在(10, 10)的位置,随后调用 LineTo 在视图上绘制一条直线到(200, 100)的位置。

3.1.2 椭圆的绘制技巧

椭圆是使用 CDC::Ellipse 函数绘制的,该函数需要四个参数来定义一个矩形区域,椭圆将会被绘制在这个矩形区域的边界内。

void CMyView::OnDraw(CDC* pDC)
{
    // 设置椭圆的边界矩形
    CRect rect(10, 10, 200, 100);
    // 绘制椭圆
    pDC->Ellipse(&rect);
}

在此示例中, Ellipse 函数绘制了一个椭圆,其边界由 rect 定义。椭圆绘制时,MFC会使用当前的画笔样式和颜色。

3.2 矩形和多边形的绘制技术

3.2.1 矩形绘制原理与实践

矩形的绘制相对简单,MFC中的 CDC::Rectangle 函数可以用来绘制矩形。该函数接受四个参数:矩形左上角的X坐标、Y坐标和右下角的X坐标、Y坐标。

void CMyView::OnDraw(CDC* pDC)
{
    // 定义矩形左上角和右下角的坐标
    pDC->Rectangle(50, 50, 150, 150);
}

此代码将绘制一个矩形,其左上角坐标为(50,50),右下角坐标为(150,150)。绘制矩形是所有图形绘制的基础之一,很多复杂图形的绘制算法都会用到矩形作为基本构建块。

3.2.2 多边形绘制技术详解

多边形的绘制可以使用 CDC::Polygon 函数,它接受一个数组或 CArray 对象,其中包含构成多边形顶点的 CPoint 对象。

void CMyView::OnDraw(CDC* pDC)
{
    CPoint ptArray[3] = { CPoint(25, 25), CPoint(100, 25), CPoint(50, 100) };

    // 绘制多边形
    pDC->Polygon(ptArray, 3);
}

在这个多边形绘制示例中,我们定义了一个三点的数组,以此形成一个三角形。 Polygon 函数将根据提供的顶点数组绘制出封闭的多边形。绘制多边形在游戏开发、图形设计等领域都有广泛的应用。

要深入了解每个函数是如何工作的,我们需要更多的代码示例和图表来帮助解释。这里只是提供了一个基础入门的介绍,对于初学者来说,建议多实践和尝试不同的参数来观察其效果。在实际的开发过程中,还需要考虑诸如性能优化、用户交互响应等多方面的问题。

4. 小球运动模拟(重力、速度、加速度)

4.1 物理运动原理简述

4.1.1 重力与运动的关系

在讨论小球运动模拟之前,必须先理解与运动有关的物理原理。重力是自然界中普遍存在的力,它决定了物体在地球表面附近的运动轨迹。对于小球这样的自由落体运动,可以通过牛顿第二定律来描述重力对物体运动的影响。重力加速度(g)是常数,近似为9.8 m/s²,在编程模拟时,我们可以将其设置为一个全局变量。

在模拟过程中,小球的垂直位置y可由以下方程计算得出:

y = y₀ + v₀t + 0.5gt²

其中,y₀ 是小球初始位置,v₀ 是小球初始速度,t 是运动时间。

4.1.2 速度与加速度的计算模型

速度是物体单位时间内移动的距离,而加速度则是速度的变化率。在小球运动模拟中,可以将速度和加速度视为向量,它们具有大小和方向。速度向量的大小(速率)会随时间变化,而加速度向量则描述了速度向量如何随时间变化。

在小球模拟场景中,我们可以设定小球在水平和垂直方向上具有不同的速度分量。例如,水平方向上小球可能具有恒定速度(忽略空气阻力),而在垂直方向上则受到重力加速度的影响。模拟时,每一帧都会更新小球的位置,更新依据的公式是:

v = v₀ + at

其中,v 是末速度,v₀ 是初速度,a 是加速度,t 是时间间隔。

4.2 小球运动模拟实践

4.2.1 小球运动的程序实现

在程序中实现小球运动,首先需要创建一个游戏循环,每隔一定时间(比如每秒60帧)更新小球的位置。以下是一个简单的代码示例,它使用了Windows API中的计时器函数来模拟小球运动的更新过程。

#include <windows.h>

// 定义全局变量
const double g = 9.8; // 重力加速度
double timeInterval = 1.0 / 60.0; // 时间间隔,假定每秒60帧
double time = 0.0; // 从程序开始计时
double vx = 10.0; // 水平速度分量
double vy = 0.0; // 初始垂直速度分量
double x = 0.0; // 小球的水平位置
double y = 100.0; // 小球的垂直位置

// 更新小球位置的函数
void UpdateBallPosition() {
    time += timeInterval;
    x += vx * timeInterval;
    vy += g * timeInterval;
    y += vy * timeInterval;
    // 可以添加代码检查小球是否触地并进行相应处理
}

// 窗口绘制函数
void OnDraw(HDC hdc) {
    MoveToEx(hdc, (int)x, (int)y, NULL); // 移动画笔到新位置
    LineTo(hdc, (int)x, (int)y); // 绘制小球路径
}

// Windows消息处理函数,处理计时器消息
LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
    switch (uMsg) {
        case WM_PAINT: {
            PAINTSTRUCT ps;
            HDC hdc = BeginPaint(hwnd, &ps);
            OnDraw(hdc);
            EndPaint(hwnd, &ps);
        } break;
        case WM_TIMER: {
            UpdateBallPosition(); // 当定时器触发时更新小球位置
            InvalidateRect(hwnd, NULL, TRUE); // 使窗口重绘
        } break;
        // 处理其他消息...
    }
    return DefWindowProc(hwnd, uMsg, wParam, lParam);
}

// 主函数
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {
    // 注册窗口类,创建窗口等操作...
    // 设置定时器,启动游戏循环...
    return 0;
}

4.2.2 模拟中碰撞和反弹的处理

小球运动模拟不仅要显示小球的自由落体,还需要处理小球碰到地面时的反弹效果。在程序中,可以通过检查小球的y坐标是否小于或等于零来判断是否与地面发生碰撞。如果发生碰撞,需要将垂直速度分量vy反向,并可以添加一定的系数来模拟能量损失。

if (y <= 0) {
    y = 0; // 假设小球碰地后,y坐标为0
    vy = -vy * 0.75; // 反向并减少速度,模拟反弹和能量损失
}

通过这种方式,小球会在画面上模拟出落体、碰撞反弹的运动效果。需要注意的是,为了保持物理现象的真实性,程序中应对每次运动的位置更新进行仔细的计算,以反映真实物理世界中小球的运动轨迹。

5. 定时器使用和碰撞检测

5.1 定时器的应用

5.1.1 定时器的设置和使用

在MFC中,定时器是一种非常实用的功能,它允许开发者在指定的时间间隔后执行特定的代码。MFC的定时器基于Windows的消息系统,当设置定时器后,系统会向应用程序的消息队列中发送 WM_TIMER 消息,应用程序可以处理这些消息来执行周期性的任务。

为了使用定时器,你需要调用 SetTimer() 函数,该函数在 CWnd 类中定义。下面是一个基本示例代码,展示了如何设置和使用定时器:

// 在某个类中声明一个定时器标识符
UINT_PTR nTimerID = 1;

// 设置定时器,调用SetTimer函数
void CMyApp::StartTimer()
{
    SetTimer(nTimerID, 100, NULL); // 每100毫秒触发一次
}

// 处理WM_TIMER消息
void CMyApp::OnTimer(UINT_PTR nIDEvent)
{
    if (nIDEvent == nTimerID)
    {
        // 定时器触发时执行的代码
    }
    CWnd::OnTimer(nIDEvent);
}

上述代码中, SetTimer 函数有三个参数:定时器ID、超时时间(单位毫秒)、定时器消息的回调函数(如果设置为 NULL ,则使用默认的消息处理函数 OnTimer )。

5.1.2 定时器在动画中的作用

在MFC绘图软件中,定时器通常用于动画效果的实现。通过定时器周期性地更新画面,可以使静态的图像动起来。例如,在绘制运动的小球时,可以通过定时器周期性地改变小球的位置,从而模拟出运动的效果。

定时器的使用示例如下:

void CMyApp::OnTimer(UINT_PTR nIDEvent)
{
    CWnd::OnTimer(nIDEvent); // 默认处理WM_TIMER消息

    // 假设有一个小球在窗口中移动
    // 更新小球的位置
    UpdateBallPosition();

    // 重绘包含小球的窗口部分
    Invalidate(); // 或者使用RedrawWindow()强制重绘
}

void CMyApp::UpdateBallPosition()
{
    // 更新小球的位置坐标
    // ...
}

在上述代码中,每次定时器触发时, OnTimer 函数会被调用。在该函数内部,我们调用了 UpdateBallPosition 来更新小球的位置,然后通过 Invalidate 函数标记窗口为无效,从而触发窗口重绘,实现动画效果。

5.2 碰撞检测技术

5.2.1 碰撞检测的基本原理

在游戏开发和物理模拟中,碰撞检测是一个核心功能。基本的碰撞检测原理是检查两个物体是否有重叠的部分。在二维平面中,通常涉及到检测两个矩形、圆形等简单形状的碰撞。MFC中并没有直接的碰撞检测函数,因此需要程序员自己实现。

基本的矩形碰撞检测可以通过比较两个矩形的边界来完成。例如,如果矩形A的右边界小于矩形B的左边界,则两者不碰撞。对于圆形,可以计算两个圆心的距离,并与两圆半径之和进行比较。

5.2.2 碰撞检测算法实现

下面是一个简单的矩形碰撞检测函数的实现示例:

bool IsRectsColliding(const CRect& rect1, const CRect& rect2)
{
    // 如果矩形1在矩形2的左边或右边,或者在矩形2的上边或下边,则不碰撞
    if (rect1.right < rect2.left || rect1.left > rect2.right ||
        rect1.top < rect2.bottom || rect1.bottom > rect2.top)
    {
        return false;
    }
    return true;
}

此函数接收两个 CRect 对象作为参数,分别代表两个矩形,并返回一个布尔值表示是否碰撞。代码中使用了简单的比较逻辑来判断两个矩形是否重叠。

圆形碰撞检测稍微复杂一些,需要计算圆心之间的距离并和半径之和比较。如下示例代码:

bool IsCirclesColliding(double x1, double y1, double r1, double x2, double y2, double r2)
{
    // 计算两个圆心之间的距离
    double distance = sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));
    // 如果距离小于两圆半径之和,则两圆相交或相切
    return distance < (r1 + r2);
}

在上面的代码中, x1 y1 r1 代表第一个圆的圆心坐标和半径, x2 y2 r2 代表第二个圆的圆心坐标和半径。使用了数学中的勾股定理来计算两圆心之间的距离,然后判断距离是否小于半径之和。

在MFC绘图软件的上下文中,碰撞检测通常用于检测移动对象之间的相互作用,如小球在桌面游戏中的碰撞,或者在模拟动画中的物体碰撞。正确实现碰撞检测功能,可以大大增强程序的互动性和用户体验。

在实现定时器和碰撞检测的过程中,开发者可能需要深入理解面向对象编程中的消息处理机制,事件驱动编程的思想,以及基本的数学知识,这些都是IT行业专业人员必须掌握的关键技能。此外,定时器的合理使用和碰撞检测的精确实现对于提高软件性能和用户体验至关重要。通过实践这些技术和方法,IT专业人员可以将理论知识转化为实际应用,推动个人职业发展。

6. 裁剪线段实现方法

在图形绘制中,裁剪是一种重要技术,它能确保图形元素只在指定的区域内绘制。裁剪线段是裁剪操作中最基本的部分,掌握它的实现方法对于高级图形绘制和游戏开发尤为重要。

6.1 裁剪线段的重要性

6.1.1 裁剪线段的基本概念

在计算机图形学中,裁剪是指对图形元素如线段、多边形、图像等进行检查,以确定它们是否与一个指定的剪切区域相交。如果图形元素与剪切区域不相交,则该元素不会被绘制到最终的显示设备上。裁剪线段就是其中的基础操作。

6.1.2 裁剪线段在绘图中的应用

裁剪线段的应用非常广泛,例如,在MFC中的视图类中,可以通过裁剪技术高效地绘制图形,提高程序的性能。它还可以用于创建复合窗口,或在多个窗口中管理复杂的图形界面时,确保图形元素的正确显示。

6.2 裁剪线段的技术实现

实现线段裁剪的方法有多种,例如中点分割法、Cohen-Sutherland算法、Liang-Barsky算法等。我们将详细介绍几种常见的裁剪线段的实现方法。

6.2.1 水平线和垂直线的裁剪算法

水平线和垂直线的裁剪相对简单,因为它们的数学表达式较为直观。以下是水平线裁剪的一个基本算法步骤:

  1. 获取水平线的y坐标和裁剪区域的上下边界。
  2. 比较水平线的y坐标与裁剪区域的上下边界值。
  3. 如果水平线的y坐标在裁剪区域的上下边界之间,线段完全可见。
  4. 如果水平线的y坐标低于裁剪区域的下边界或高于上边界,线段完全不可见。
  5. 如果线段部分可见,需要截断线段的两端点至裁剪区域的边界。
// 示例代码段,展示水平线裁剪算法的逻辑实现

void ClipHorizontalLine(int &yTop, int &yBottom, int &lineY) {
    if (lineY < yTop) {
        // 线段低于裁剪区域的上边界,不可见
        lineY = yTop;
    } else if (lineY > yBottom) {
        // 线段高于裁剪区域的下边界,不可见
        lineY = yBottom;
    }
    // 如果线段在裁剪区域的上下边界之间,则无需修改
}

6.2.2 斜线裁剪的策略与实现

斜线裁剪较为复杂,因为需要计算线段与裁剪区域边界的交点。Cohen-Sutherland算法和Liang-Barsky算法是两种流行的斜线裁剪算法,它们都可以有效地解决斜线裁剪问题。

Cohen-Sutherland算法

Cohen-Sutherland算法使用了一种位操作技巧,将裁剪区域的边界和线段的端点编码为4位二进制数。算法使用这些编码来快速判断线段是否完全在裁剪区域之外、完全在内或部分在内。

以下是Cohen-Sutherland算法的步骤概述:

  1. 对线段的两个端点和裁剪窗口的四个边界分别编码。
  2. 使用编码来判断线段与裁剪窗口的关系。
  3. 如果线段完全在裁剪窗口之外,裁剪结束。
  4. 如果线段与窗口边界相交,计算交点,并根据交点裁剪线段。
Liang-Barsky算法

Liang-Barsky算法是一种基于参数化的线段裁剪算法。它使用线段的参数化表示来确定线段是否与裁剪窗口边界相交,并据此裁剪线段。

以下是Liang-Barsky算法的步骤概述:

  1. 使用参数t来表示线段上的一点,其中t的取值范围是[0, 1]。
  2. 将线段的两个端点表示为线段的参数化方程。
  3. 对于每个裁剪窗口的边界,计算出t的取值范围,以确定线段是否与该边界相交。
  4. 根据所有边界的t值范围,取交集得到线段最终的裁剪结果。

通过上述算法,裁剪线段的实现可以有效地被集成到MFC绘图程序中,为更复杂的图形绘制和动画效果提供基础。

7. 平移图形的坐标变换技术

7.1 坐标变换基础

7.1.1 坐标变换的数学原理

在进行图形绘制时,坐标变换是一种非常重要的概念。简而言之,坐标变换就是将一个图形的坐标系变换到另一个坐标系的过程。在数学上,它通常涉及线性代数中的矩阵变换,其中可以包括平移、旋转、缩放等。

平移变换是最基本的坐标变换之一,通过在x和y坐标上加上或减去特定的值,可以实现图形在坐标系中的移动。数学上,一个点 (x, y) 经过平移变换后的新位置 (x', y') 可以表示为:

x' = x + tx
y' = y + ty

其中,tx 和 ty 分别代表在 x 和 y 方向上的平移量。

7.1.2 MFC中坐标变换的实现

在MFC中, CDC 类提供了一系列方法来处理坐标变换。例如, SetMapMode 方法用于设置映射模式,它是影响坐标变换的重要因素。 LPtoDP DPtoLP 方法则分别用于将逻辑坐标转换为设备坐标以及将设备坐标转换为逻辑坐标,这是实现坐标变换的关键。

// 保存原始映射模式
int nOldMapMode = pDC->GetMapMode();

// 设置映射模式为MM_ANISOTROPIC,以支持自定义缩放
pDC->SetMapMode(MM_ANISOTROPIC);

// 设置窗口范围和视口范围
pDC->SetWindowExt(10000, 10000);
pDC->SetViewportExt(100, -100);

// 平移图形
pDC->LPtoDP(&tx, 1);  // 将逻辑坐标tx转换为设备坐标
pDC->LPtoDP(&ty, 1);  // 将逻辑坐标ty转换为设备坐标
pDC->MoveTo(0, 0);
pDC->LineTo(tx, ty);

// 恢复原始映射模式
pDC->SetMapMode(nOldMapMode);

7.2 平移变换的应用

7.2.1 平移变换在图形绘制中的应用

在图形绘制中,平移变换可以用来实现图形的移动,比如在动画制作或者游戏开发中,根据需要将图形在画布上移动到指定位置。当需要绘制多个对象,并且希望它们以一定的规律移动时,使用平移变换是一种简单有效的技术。

7.2.2 多重平移变换与动画效果

通过在不同的时机应用不同的平移变换,可以实现较为复杂的动画效果。例如,在制作动画时,我们可以根据时间间隔对多个图形应用连续的平移变换,形成图形移动的动画序列。

// 动画中的多重平移变换示例
void CAnimationView::OnTimer(UINT_PTR nIDEvent)
{
    // 假设CAnimationView是拥有 CDC 成员变量pDC的类
    CDC* pDC = this->GetDC();

    // 清除背景
    pDC->FillSolidRect(&rect, pDC->GetBkColor());

    // 获取当前平移量
    int currentX = m_nCurrentFrame * 50;
    int currentY = m_nCurrentFrame * 30;

    // 将逻辑坐标转换为设备坐标,并绘制图形
    pDC->LPtoDP(&currentX, 1);
    pDC->LPtoDP(&currentY, 1);
    pDC->MoveTo(0, 0);
    pDC->LineTo(currentX, currentY);

    // 更新下一帧动画
    m_nCurrentFrame++;

    // 释放设备上下文
    this->ReleaseDC(pDC);

    // 重绘视图
    Invalidate();
}

在上述示例中, m_nCurrentFrame 变量控制动画的当前帧,通过每次增加该变量的值并绘制图形,形成了动画效果。

在这一章节中,我们学习了坐标变换的基础知识和数学原理,并展示了如何在MFC中通过 CDC 类实现坐标变换。我们还讨论了平移变换在实际图形绘制中的应用,以及如何通过连续平移实现动画效果。通过这些方法,我们可以为MFC应用程序添加动态的视觉效果,从而提升用户体验。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本篇教程介绍了如何使用Microsoft Foundation Classes(MFC)创建一个绘图软件,该软件具有绘制基本图形和模拟小球运动的功能。MFC是微软的C++类库,简化了Windows应用开发。我们将学习如何利用MFC中的CDC类来绘制直线、椭圆、矩形和多边形,以及如何通过物理模拟和定时器控制小球的运动。此外,我们还将探索实现裁剪线段和平移图形的技术。这个项目不仅能帮助初学者掌握MFC编程,也是深入学习Windows程序设计和图形学的有效途径。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值