摄影故事《冰箱里的企鹅》场景零

本文探讨了生活中那些有缘却未曾深入了解的人们之间的微妙关系。在快节奏的生活里,我们经常遇到一些似乎注定会相遇的人,但又总是擦肩而过,保持着一种特殊的距离感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迁徙

陌生的城市,陌生的人,喜悦和疲惫并存。

我常常遇见你
在某个公交站旁
在一条林荫路上
或在
不可思议的地方

我相信缘分的存在
就像
我相信宇宙的无穷
我承认
你我是有缘的人

可是
我们从来
不彼此问候
不互相凝视
甚至
不以为意、擦肩而过
不曾对此、停顿一刻
我们是陌生人

这是一种微妙的关系
就像
昨天与屋檐
牙刷与雪花
稻草和杜鹃
我看得见你的影子
却捉不到你的模样

我想
你也是如此
如此闪过
如此忽视
如此不远不近
这有些让我分不清
到底天是蓝的
还是水为蓝的

在我们人生中
总有些人有缘
却是那么陌生
互相只有记忆的碎片
不知道名字
不了解性格
无关风月、无关你我
我把这些人叫作
有缘却陌生的人

 

转载于:https://www.cnblogs.com/cutesnow/p/11542661.html

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值