matlab训练器,分类学习器 - MATLAB & Simulink - MathWorks 中国

本文介绍了一个通用的工作流,用于训练、比较和改进多种类型的分类模型,包括决策树、判别分析、逻辑回归等。通过自动化的模型训练过程,可以轻松地导入数据、选择交叉验证或保留验证选项,并在训练完成后评估模型准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常见工作流

Workflow for training, comparing and improving classification models,

including automated, manual, and parallel training.

Import data into Classification Learner from the workspace or files, find

example data sets, and choose cross-validation or holdout validation

options.

In Classification Learner, automatically train a selection of models, or

compare and tune options in decision tree, discriminant analysis, logistic

regression, naive Bayes, support vector machine, nearest neighbor, ensemble, and

neural network models.

Compare model accuracy scores, visualize results by plotting class

predictions, and check performance per class in the Confusion Matrix.

After training in Classification Learner, export models to the workspace,

generate MATLAB® code, or generate C code for prediction.

Create and compare classification trees, and export trained models to make

predictions for new data.

Create and compare discriminant analysis classifiers, and export trained

models to make predictions for new data.

Create and compare logistic regression classifiers, and export trained models

to make predictions for new data.

Create and compare naive Bayes classifiers, and export trained models to make

predictions for new data.

Create and compare support vector machine (SVM) classifiers, and export

trained models to make predictions for new data.

Create and compare nearest neighbor classifiers, and export trained models to

make predictions for new data.

Create and compare ensemble classifiers, and export trained models to make

predictions for new data.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值