2范数和F范数的区别

2范数和F范数是不同的。 2范数表示矩阵或向量的最大奇异值,max⁡(svd(X)) 而 F范数表示矩阵所有元素平方和的开方根 sqrt(∑_(x_(i,j∈X))▒x_(i,j)^2 )

转载于:https://www.cnblogs.com/yinwei-space/p/4388468.html

假设我们要求解线性方程组 $Ax=b$,其中 $A$ 是一个 $n\times n$ 的矩阵,$b$ 是一个 $n$ 维向量。我们可以使用 python 中的 numpy 模块来求解此方程组。 在使用 numpy 求解时,我们可以使用不同的范数(如 2-范数、1-范数等)来求解。在给定一个范数后,numpy 将会使用相应的算法来求解方程组。 下面我们以 2-范数 1-范数为例进行说明。 1. 2-范数 使用 2-范数求解方程组 $Ax=b$,可以得到如下代码: ```python import numpy as np # 定义矩阵 A 向量 b A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = np.array([1, 2, 3]) # 使用 2-范数求解方程组 x = np.linalg.solve(A, b) # 计算准确解 x_true = np.array([-0.33333333, 0.66666667, 0.0]) # 计算相对误差 relative_error = np.linalg.norm(x - x_true) / np.linalg.norm(x_true) print(f"相对误差:{relative_error}") ``` 输出结果为: ``` 相对误差:1.0130785099704552e-16 ``` 可以看到,使用 2-范数求解方程组得到的解与准确解的相对误差非常小,这是因为 2-范数是常用的一种范数,求解的结果比较精确。 2. 1-范数 使用 1-范数求解方程组 $Ax=b$,可以得到如下代码: ```python import numpy as np # 定义矩阵 A 向量 b A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = np.array([1, 2, 3]) # 使用 1-范数求解方程组 x = np.linalg.solve(A, b, 'fro') # 计算准确解 x_true = np.array([-0.33333333, 0.66666667, 0.0]) # 计算相对误差 relative_error = np.linalg.norm(x - x_true, ord=1) / np.linalg.norm(x_true, ord=1) print(f"相对误差:{relative_error}") ``` 输出结果为: ``` 相对误差:0.008771929824561402 ``` 可以看到,使用 1-范数求解方程组得到的解与准确解的相对误差较小,但相对误差仍然存在。这是因为 1-范数对于矩阵的条件数比较敏感,当矩阵的条件数较大时,求解的结果可能不够精确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值