波动方程初值问题求解2

题目

问题 1. 求解初值问题 (IVP)

{ utt−c2uxx=f(x,t);u∣t=0=g(x),ut∣t=0=h(x) \begin{cases} u_{tt} - c^2 u_{xx} = f(x, t); \\ u|_{t=0} = g(x), \\ u_t|_{t=0} = h(x) \end{cases} uttc2uxx=f(x,t);ut=0=g(x),utt=0=h(x)

其中

  • f(x,t)=sin⁡(αx) f(x, t) = \sin(\alpha x) f(x,t)=sin(αx), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0;
  • f(x,t)=sin⁡(αx)sin⁡(βt) f(x, t) = \sin(\alpha x) \sin(\beta t) f(x,t)=sin(αx)sin(βt), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0;
  • f(x,t)=f(x) f(x, t) = f(x) f(x,t)=f(x), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0; \quad \text{(a)} \
  • f(x,t)=f(x)t f(x, t) = f(x)t f(x,t)=f(x)t, g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0; \quad \text{(b)} $$

在情况 (a) 中,假设 f(x)=F′′(x) f(x) = F''(x) f(x)=F(x); 在情况 (b) 中,假设 f(x)=F′′′(x) f(x) = F'''(x) f(x)=F(x).


解决题目

我们求解非齐次波动方程的初值问题。方程的一般形式为:
utt−c2uxx=f(x,t),u(x,0)=g(x),ut(x,0)=h(x). u_{tt} - c^2 u_{xx} = f(x, t), \quad u(x, 0) = g(x), \quad u_t(x, 0) = h(x). uttc2uxx=f(x,t),u(x,0)=g(x),ut(x,0)=h(x).
给定所有情况下 g(x)=0 g(x) = 0 g(x)=0h(x)=0 h(x) = 0 h(x)=0,解可以使用 d’Alembert 公式的推广(非齐次波动方程的积分公式)求得:
u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)f(s,τ)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} f(s, \tau) ds d\tau. u(x,t)=2c10txc(tτ)x+c(tτ)f(s,τ)dsdτ.
我们将针对每种给定的 f(x,t) f(x, t) f(x,t) 计算此积分。

情况 1: f(x,t)=sin⁡(αx) f(x, t) = \sin(\alpha x) f(x,t)=sin(αx), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0

  • 代入公式:
    u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)sin⁡(αs)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} \sin(\alpha s) ds d\tau. u(x,t)=2c10txc(tτ)x+c(tτ)sin(αs)dsdτ.
  • 先计算内层积分:
    ∫sin⁡(αs)ds=−1αcos⁡(αs), \int \sin(\alpha s) ds = -\frac{1}{\alpha} \cos(\alpha s), sin(αs)ds=α1cos(αs),
    ∫absin⁡(αs)ds=[−1αcos⁡(αs)]s=as=b=−1α[cos⁡(αb)−cos⁡(αa)], \int_{a}^{b} \sin(\alpha s) ds = \left[ -\frac{1}{\alpha} \cos(\alpha s) \right]_{s=a}^{s=b} = -\frac{1}{\alpha} \left[ \cos(\alpha b) - \cos(\alpha a) \right], absin(αs)ds=[α1cos(αs)]s=as=b=α1[cos(αb)cos(αa)],
    其中 a=x−c(t−τ) a = x - c(t - \tau) a=xc(tτ), b=x+c(t−τ) b = x + c(t - \tau) b=x+c(tτ).
  • 使用三角恒等式 cos⁡A−cos⁡B=−2sin⁡(A+B2)sin⁡(A−B2) \cos A - \cos B = -2 \sin\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right) cosAcosB=2sin(2A+B)sin(2AB):
    A=α(x+c(t−τ)),B=α(x−c(t−τ)), A = \alpha (x + c(t - \tau)), \quad B = \alpha (x - c(t - \tau)), A=α(x+c(tτ)),B=α(xc(tτ)),
    A+B=2αx,A−B=2αc(t−τ), A + B = 2\alpha x, \quad A - B = 2\alpha c (t - \tau), A+B=2αx,AB=2αc(tτ),
    cos⁡A−cos⁡B=−2sin⁡(αx)sin⁡(αc(t−τ)). \cos A - \cos B = -2 \sin(\alpha x) \sin(\alpha c (t - \tau)). cosAcosB=2sin(αx)sin(αc(tτ)).
    所以:
    ∫absin⁡(αs)ds=−1α[−2sin⁡(αx)sin⁡(αc(t−τ))]=2αsin⁡(αx)sin⁡(αc(t−τ)). \int_{a}^{b} \sin(\alpha s) ds = -\frac{1}{\alpha} \left[ -2 \sin(\alpha x) \sin(\alpha c (t - \tau)) \right] = \frac{2}{\alpha} \sin(\alpha x) \sin(\alpha c (t - \tau)). absin(αs)ds=α1[2sin(αx)sin(αc(tτ))]=α2sin(αx)sin(αc(tτ)).
  • 代入外层积分:
    u(x,t)=12c∫0t2αsin⁡(αx)sin⁡(αc(t−τ))dτ=1cαsin⁡(αx)∫0tsin⁡(αc(t−τ))dτ. u(x, t) = \frac{1}{2c} \int_0^t \frac{2}{\alpha} \sin(\alpha x) \sin(\alpha c (t - \tau)) d\tau = \frac{1}{c \alpha} \sin(\alpha x) \int_0^t \sin(\alpha c (t - \tau)) d\tau. u(x,t)=2c10tα2sin(αx)sin(αc(tτ))dτ=cα1sin(αx)0tsin(αc(tτ))dτ.
  • 计算积分(令 θ=t−τ \theta = t - \tau θ=tτ):
    ∫0tsin⁡(αc(t−τ))dτ=∫0tsin⁡(αcθ)dθ=[−1αccos⁡(αcθ)]0t=−1αc[cos⁡(αct)−1]. \int_0^t \sin(\alpha c (t - \tau)) d\tau = \int_0^t \sin(\alpha c \theta) d\theta = \left[ -\frac{1}{\alpha c} \cos(\alpha c \theta) \right]_0^t = -\frac{1}{\alpha c} \left[ \cos(\alpha c t) - 1 \right]. 0tsin(αc(tτ))dτ=0tsin(αcθ)dθ=[αc1cos(αcθ)]0t=αc1[cos(αct)1].
  • 最终解:
    u(x,t)=1cαsin⁡(αx)(−1αc(cos⁡(αct)−1))=1c2α2sin⁡(αx)(1−cos⁡(αct)). u(x, t) = \frac{1}{c \alpha} \sin(\alpha x) \left( -\frac{1}{\alpha c} (\cos(\alpha c t) - 1) \right) = \frac{1}{c^2 \alpha^2} \sin(\alpha x) (1 - \cos(\alpha c t)). u(x,t)=cα1sin(αx)(αc1(cos(αct)1))=c2α21sin(αx)(1cos(αct)).

答案:
u(x,t)=1c2α2sin⁡(αx)(1−cos⁡(αct)) \boxed{u(x,t) = \dfrac{1}{c^{2}\alpha^{2}}\sin\left(\alpha x\right)\left(1 - \cos\left(\alpha ct\right)\right)} u(x,t)=c2α21sin(αx)(1cos(αct))


情况 2: f(x,t)=sin⁡(αx)sin⁡(βt) f(x, t) = \sin(\alpha x) \sin(\beta t) f(x,t)=sin(αx)sin(βt), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0

  • 代入公式:
    u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)sin⁡(αs)sin⁡(βτ)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} \sin(\alpha s) \sin(\beta \tau) ds d\tau. u(x,t)=2c10txc(tτ)x+c(tτ)sin(αs)sin(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值