题目
问题 1. 求解初值问题 (IVP)
{ utt−c2uxx=f(x,t);u∣t=0=g(x),ut∣t=0=h(x) \begin{cases} u_{tt} - c^2 u_{xx} = f(x, t); \\ u|_{t=0} = g(x), \\ u_t|_{t=0} = h(x) \end{cases} ⎩⎪⎨⎪⎧utt−c2uxx=f(x,t);u∣t=0=g(x),ut∣t=0=h(x)
其中
- f(x,t)=sin(αx) f(x, t) = \sin(\alpha x) f(x,t)=sin(αx), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0;
- f(x,t)=sin(αx)sin(βt) f(x, t) = \sin(\alpha x) \sin(\beta t) f(x,t)=sin(αx)sin(βt), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0;
- f(x,t)=f(x) f(x, t) = f(x) f(x,t)=f(x), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0; \quad \text{(a)} \
- f(x,t)=f(x)t f(x, t) = f(x)t f(x,t)=f(x)t, g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0; \quad \text{(b)} $$
在情况 (a) 中,假设 f(x)=F′′(x) f(x) = F''(x) f(x)=F′′(x); 在情况 (b) 中,假设 f(x)=F′′′(x) f(x) = F'''(x) f(x)=F′′′(x).
解决题目
我们求解非齐次波动方程的初值问题。方程的一般形式为:
utt−c2uxx=f(x,t),u(x,0)=g(x),ut(x,0)=h(x). u_{tt} - c^2 u_{xx} = f(x, t), \quad u(x, 0) = g(x), \quad u_t(x, 0) = h(x). utt−c2uxx=f(x,t),u(x,0)=g(x),ut(x,0)=h(x).
给定所有情况下 g(x)=0 g(x) = 0 g(x)=0 和 h(x)=0 h(x) = 0 h(x)=0,解可以使用 d’Alembert 公式的推广(非齐次波动方程的积分公式)求得:
u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)f(s,τ)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} f(s, \tau) ds d\tau. u(x,t)=2c1∫0t∫x−c(t−τ)x+c(t−τ)f(s,τ)dsdτ.
我们将针对每种给定的 f(x,t) f(x, t) f(x,t) 计算此积分。
情况 1: f(x,t)=sin(αx) f(x, t) = \sin(\alpha x) f(x,t)=sin(αx), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0
- 代入公式:
u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)sin(αs)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} \sin(\alpha s) ds d\tau. u(x,t)=2c1∫0t∫x−c(t−τ)x+c(t−τ)sin(αs)dsdτ. - 先计算内层积分:
∫sin(αs)ds=−1αcos(αs), \int \sin(\alpha s) ds = -\frac{1}{\alpha} \cos(\alpha s), ∫sin(αs)ds=−α1cos(αs),
∫absin(αs)ds=[−1αcos(αs)]s=as=b=−1α[cos(αb)−cos(αa)], \int_{a}^{b} \sin(\alpha s) ds = \left[ -\frac{1}{\alpha} \cos(\alpha s) \right]_{s=a}^{s=b} = -\frac{1}{\alpha} \left[ \cos(\alpha b) - \cos(\alpha a) \right], ∫absin(αs)ds=[−α1cos(αs)]s=as=b=−α1[cos(αb)−cos(αa)],
其中 a=x−c(t−τ) a = x - c(t - \tau) a=x−c(t−τ), b=x+c(t−τ) b = x + c(t - \tau) b=x+c(t−τ). - 使用三角恒等式 cosA−cosB=−2sin(A+B2)sin(A−B2) \cos A - \cos B = -2 \sin\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right) cosA−cosB=−2sin(2A+B)sin(2A−B):
A=α(x+c(t−τ)),B=α(x−c(t−τ)), A = \alpha (x + c(t - \tau)), \quad B = \alpha (x - c(t - \tau)), A=α(x+c(t−τ)),B=α(x−c(t−τ)),
A+B=2αx,A−B=2αc(t−τ), A + B = 2\alpha x, \quad A - B = 2\alpha c (t - \tau), A+B=2αx,A−B=2αc(t−τ),
cosA−cosB=−2sin(αx)sin(αc(t−τ)). \cos A - \cos B = -2 \sin(\alpha x) \sin(\alpha c (t - \tau)). cosA−cosB=−2sin(αx)sin(αc(t−τ)).
所以:
∫absin(αs)ds=−1α[−2sin(αx)sin(αc(t−τ))]=2αsin(αx)sin(αc(t−τ)). \int_{a}^{b} \sin(\alpha s) ds = -\frac{1}{\alpha} \left[ -2 \sin(\alpha x) \sin(\alpha c (t - \tau)) \right] = \frac{2}{\alpha} \sin(\alpha x) \sin(\alpha c (t - \tau)). ∫absin(αs)ds=−α1[−2sin(αx)sin(αc(t−τ))]=α2sin(αx)sin(αc(t−τ)). - 代入外层积分:
u(x,t)=12c∫0t2αsin(αx)sin(αc(t−τ))dτ=1cαsin(αx)∫0tsin(αc(t−τ))dτ. u(x, t) = \frac{1}{2c} \int_0^t \frac{2}{\alpha} \sin(\alpha x) \sin(\alpha c (t - \tau)) d\tau = \frac{1}{c \alpha} \sin(\alpha x) \int_0^t \sin(\alpha c (t - \tau)) d\tau. u(x,t)=2c1∫0tα2sin(αx)sin(αc(t−τ))dτ=cα1sin(αx)∫0tsin(αc(t−τ))dτ. - 计算积分(令 θ=t−τ \theta = t - \tau θ=t−τ):
∫0tsin(αc(t−τ))dτ=∫0tsin(αcθ)dθ=[−1αccos(αcθ)]0t=−1αc[cos(αct)−1]. \int_0^t \sin(\alpha c (t - \tau)) d\tau = \int_0^t \sin(\alpha c \theta) d\theta = \left[ -\frac{1}{\alpha c} \cos(\alpha c \theta) \right]_0^t = -\frac{1}{\alpha c} \left[ \cos(\alpha c t) - 1 \right]. ∫0tsin(αc(t−τ))dτ=∫0tsin(αcθ)dθ=[−αc1cos(αcθ)]0t=−αc1[cos(αct)−1]. - 最终解:
u(x,t)=1cαsin(αx)(−1αc(cos(αct)−1))=1c2α2sin(αx)(1−cos(αct)). u(x, t) = \frac{1}{c \alpha} \sin(\alpha x) \left( -\frac{1}{\alpha c} (\cos(\alpha c t) - 1) \right) = \frac{1}{c^2 \alpha^2} \sin(\alpha x) (1 - \cos(\alpha c t)). u(x,t)=cα1sin(αx)(−αc1(cos(αct)−1))=c2α21sin(αx)(1−cos(αct)).
答案:
u(x,t)=1c2α2sin(αx)(1−cos(αct)) \boxed{u(x,t) = \dfrac{1}{c^{2}\alpha^{2}}\sin\left(\alpha x\right)\left(1 - \cos\left(\alpha ct\right)\right)} u(x,t)=c2α21sin(αx)(1−cos(αct))
情况 2: f(x,t)=sin(αx)sin(βt) f(x, t) = \sin(\alpha x) \sin(\beta t) f(x,t)=sin(αx)sin(βt), g(x)=0 g(x) = 0 g(x)=0, h(x)=0 h(x) = 0 h(x)=0
- 代入公式:
u(x,t)=12c∫0t∫x−c(t−τ)x+c(t−τ)sin(αs)sin(βτ)dsdτ. u(x, t) = \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} \sin(\alpha s) \sin(\beta \tau) ds d\tau. u(x,t)=2c1∫0t∫x−c(t−τ)x+c(t−τ)sin(αs)sin(