设 u(x) u(x) u(x) 是 R3\mathbb{R}^3R3 中的调和函数,且满足
∬R3u2(x) dx(1+∣x∣)3<∞. \iint_{\mathbb{R}^3} \frac{u^2(x) \, dx}{(1 + |x|)^3} < \infty. ∬R3(1+∣x∣)3u2(x)dx<∞.
需要证明 u(x)≡0 u(x) \equiv 0 u(x)≡0。
证明步骤:
-
调和函数与次调和性:
由于 u u u 是调和函数,满足 Δu=0\Delta u = 0Δu=0,则 u2 u^2 u2 是次调和函数,因为
Δ(u2)=2∣∇u∣2+2uΔu=2∣∇u∣2≥0. \Delta (u^2) = 2 |\nabla u|^2 + 2u \Delta u = 2 |\nabla u|^2 \geq 0. Δ(u2)=2∣∇u∣2+2uΔu=2∣∇u∣2≥0.
次调和函数的球面平均值具有单调不减的性质。 -
球面平均值的定义:
定义以原点为中心、半径为 r r r 的球面上的平均值为
g(r)=1∣∂Br∣∫∂Bru2 dS=14πr2∫∣x∣=ru2 dS, g(r) = \frac{1}{|\partial B_r|} \int_{\partial B_r} u^2 \, dS = \frac{1}{4\pi r^2} \int_{|x| = r} u^2 \, dS, g(r)=∣∂Br∣1∫∂Bru2dS=4πr21∫∣x∣=ru2dS,
其中