调和函数恒为零的证明

u(x) u(x) u(x)R3\mathbb{R}^3R3 中的调和函数,且满足
∬R3u2(x) dx(1+∣x∣)3<∞. \iint_{\mathbb{R}^3} \frac{u^2(x) \, dx}{(1 + |x|)^3} < \infty. R3(1+x)3u2(x)dx<.
需要证明 u(x)≡0 u(x) \equiv 0 u(x)0

证明步骤:

  1. 调和函数与次调和性
    由于 u u u 是调和函数,满足 Δu=0\Delta u = 0Δu=0,则 u2 u^2 u2 是次调和函数,因为
    Δ(u2)=2∣∇u∣2+2uΔu=2∣∇u∣2≥0. \Delta (u^2) = 2 |\nabla u|^2 + 2u \Delta u = 2 |\nabla u|^2 \geq 0. Δ(u2)=2u2+2uΔu=2u20.
    次调和函数的球面平均值具有单调不减的性质。

  2. 球面平均值的定义
    定义以原点为中心、半径为 r r r 的球面上的平均值为
    g(r)=1∣∂Br∣∫∂Bru2 dS=14πr2∫∣x∣=ru2 dS, g(r) = \frac{1}{|\partial B_r|} \int_{\partial B_r} u^2 \, dS = \frac{1}{4\pi r^2} \int_{|x| = r} u^2 \, dS, g(r)=Br1Bru2dS=4πr21x=ru2dS,
    其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值