题目
问题8. 在带状区域 {
(x,y):0<x<1, −∞<y<∞} \{(x, y) : 0 < x < 1, \, -\infty < y < \infty\} {
(x,y):0<x<1,−∞<y<∞} 中求解
Δu−4u=0, \Delta u - 4u = 0, Δu−4u=0,
ux∣x=0=0, u_{x}|_{x=0} = 0, ux∣x=0=0,
ux∣x=1={
1−∣y∣∣y∣≤1,0∣y∣≥1, u_{x}|_{x=1} = \begin{cases} 1 - |y| & |y| \leq 1, \\ 0 & |y| \geq 1, \end{cases} ux∣x=1={
1−∣y∣0∣y∣≤1,∣y∣≥1,
max∣u∣<∞. \max |u| < \infty. max∣u∣<∞.
解应以适当的傅里叶积分形式表示。
解答
考虑偏微分方程 Δu−4u=0 \Delta u - 4u = 0 Δu−4u=0,其中 Δu=uxx+uyy \Delta u = u_{xx} + u_{yy} Δu=uxx+uyy,即:
uxx+uyy−4u=0, u_{xx} + u_{yy} - 4u = 0, uxx+uyy−4u=0,
在区域 0<x<1 0 < x < 1 0<x<1,−∞<y<∞ -\infty < y < \infty −∞<y<∞ 内求解。边界条件为:
- 在 x=0 x = 0 x=0 处,Neumann 条件:ux=0 u_x = 0 ux=0,
- 在 x=1 x = 1 x=1 处,Neumann 条件:ux=g(y) u_x = g(y) ux=g(y),其中 g(y)={ 1−∣y∣∣y∣≤10∣y∣≥1 g(y) = \begin{cases} 1 - |y| & |y| \leq 1 \\ 0 & |y| \geq 1 \end{cases} g(y)={ 1−∣y∣0∣y∣≤1∣y∣≥1,
- 解在整个区域有界:max∣u∣<∞ \max |u| < \infty max∣u∣<∞.
由于区域在 y y y 方向无界,使用傅里叶变换方法求解。定义 y y y 变量的傅里叶变换:
u^(x,k)=∫−∞∞u(x,y)e−ikydy. \hat{u}(x, k) = \int_{-\infty}^{\infty} u(x, y) e^{-i k y} dy. u^(x,k)=∫−∞∞u(x,y)e−ikydy.
对原方程取傅里叶变换,得:
∂2∂x2u^(x,k)−k2u^(x,k)−4u^(x,k)=0, \frac{\partial^2}{\partial x^2} \hat{u}(x, k) - k^2 \hat{u}(x, k) - 4 \hat{u}(x, k) = 0, ∂x2∂2u^(x,k)−