P2734 游戏 A Game

本文介绍了一个双人游戏的最优策略算法实现,通过动态规划方法计算玩家在一串正整数中轮流取数以获得最大得分的策略。文章提供了完整的C++代码示例,展示了如何通过预处理和状态转移方程实现策略计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目背景

有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。

题目描述

编一个执行最优策略的程序,最优策略就是使玩家在与最好的对手对弈时,能得到的在当前情况下最大的可能的总分的策略。你的程序要始终为第二位玩家执行最优策略。

输入格式

第一行: 正整数N, 表示序列中正整数的个数。

第二行至末尾: 用空格分隔的N个正整数(大小为1-200)。

输出格式

只有一行,用空格分隔的两个整数: 依次为玩家一和玩家二最终的得分。

输入输出样例

输入 #1复制
6 
4 7 2 9 5 2
输出 #1复制
18 11

说明/提示

题目翻译来自NOCOW。

USACO Training Section 3.3

 

 

是一道DP

 

我记得好像在哪做过

 

好像双向队列也能做。。。

 

#include<cstdio>
#include<iostream>
using namespace std;

inline int read(){
    int s=0,w=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-'){
            w=-1;
        }
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        s=s*10+ch-'0';
        ch=getchar();
    }
    return s*w;
}


int n,t;

int s[210],f[210][210];

int main(){
    int i,j;
    n=read();
    for(i=1;i<=n;i++){
        t=read();
        s[i]=s[i-1]+t;
        f[i][i]=t;
    }
    for(i=n-1;i>=1;i--){ 
        for(j=i+1;j<=n;j++){ 
            f[i][j]=max((s[j]-s[i-1])-f[i][j-1],(s[j]-s[i-1])-f[i+1][j]);
        }
    }
    printf("%d %d\n",f[1][n],s[n]-f[1][n]);
    return 0;
}

 

转载于:https://www.cnblogs.com/hrj1/p/11538081.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值