Python pandas检查数据中是否有NaN的几种方法

本文介绍了使用Python Pandas库高效检查DataFrame中是否存在NaN值的方法。包括检查每一列、每一行及整个DataFrame中是否存在缺失值的不同方式,并对比了各种方法的执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python pandas: check if any value is NaN in DataFrame
# 查看每一列是否有NaN:
df.isnull().any(axis=0)
# 查看每一行是否有NaN:
df.isnull().any(axis=1)

# 查看所有数据中是否有NaN最快的:
df.isnull().values.any()

# In [2]: df = pd.DataFrame(np.random.randn(1000,1000))

In [3]: df[df > 0.9] = pd.np.nan

In [4]: %timeit df.isnull().any().any()
100 loops, best of 3: 14.7 ms per loop

In [5]: %timeit df.isnull().values.sum()
100 loops, best of 3: 2.15 ms per loop

In [6]: %timeit df.isnull().sum().sum()
100 loops, best of 3: 18 ms per loop

In [7]: %timeit df.isnull().values.any()
1000 loops, best of 3: 948 µs per loop

# df.isnull().sum().sum() is a bit slower, but of course, has additional information -- the number of NaNs.

转载于:https://www.cnblogs.com/songdanzju/p/7497566.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值