定积分求导例题_有理函数不定积分计算法则——留数定理法

本文介绍了如何利用留数定理法进行有理函数的不定积分计算,包括单值代入法、复根代入法和重根代入法,并通过例题详细阐述了每种方法的步骤和应用。适用于考研数学及高阶数学学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ac04551c85527eb9a6a7813f4688f59a.png

本章将介绍有理函数不定积分法则,不用待定系数&取值的方法也可拆分有理函数。其它不定积分计算法则如下所示。(更新于:Dec 15,2020 )

TianX:不定积分计算法则总结​zhuanlan.zhihu.com
41202a0769c3641f6991f095d0149d9d.png

关于留数定理拆分法实现过程,见下所示。

TianX:留数法实现有理函数拆分原理​zhuanlan.zhihu.com
7b887af2fdddee0c164f746da3bcbfad.png

下面将介绍有理函数不定积分拆分法,这种方法可以直接将一个较为复杂的有理函数通过系数待定原则可直接求出相应待定系数。首先,介绍有理函数概念&分解原则;其次,介绍几种典型直接求系数方法;最后,通过2019年数学二真题进行检验。

方法仅供参考!适用才是硬道理。

内容概要

★有理函数概念

★分解原则

★系数待定原则

真题运用

★结束语

文中若有错误的地方,恳请广大"乎友、带佬"们指正;若对你的学习有帮助,请不忘点个赞(不要只收藏)或转发给你身边正在备考、学习的同学,在下表示万分感谢。

一、有理函数概念

1.有理函数定义:两个多项式的商

称为有理分式,其中
分别是x的n次多项式和m次多项式。

2.方法:将

因式分解,再把
分解成若干最简有理式的和。

3.说明:这里只讨论n<m(真分式)的情况,若是假分式,可将其转化为多项式与真分式之和。

PS:若出现

,可将假分式化为真分式。
二、分解原则

1.分解原则

的一次单因式
产生一项

的k重单因式
产生k项,分别为

的二次单因式
产生一项

的k重二次因式
产生k项,分别为

例1:拆分

解:根据分解原则

原式

2.试根法简介

一般有理函数分母最多以二次多项式出现(乘积形式下),这时可通过因式分解然后按照上述方法将其求出。若分母出现三次或三次以上的多项式(考研一般最多二次多项式),采用试根法可以达到事半功倍的效果。

现给出多项式

试根方法:

①若

,
则多项式可提出一个x;

②若

,
则多项式可提出一个(x-1);

③若f(x)所有奇数次项系数之和等于偶数次项系数的和则f(x)可提出一个(x+1);

例:拆分

解:对于分母由于1-5+17-13=0,故一定存在因式(x-1),剩下的因式怎么求?用除法即可!见下图所示。

9d09a4679ed3f962eef1045b9488b941.png
图1 多项式除法运算

于是

,到这一步后由于
不能继续分解,因此。

原式

三、系数待定原则

以下内容是留数定理的核心应用!

①单值代入法

1-★:若

(
可分解为含有若干单因式的项),

,则

※※※PS:只有拆出来的项中,分母为单根才能使用上述结论,否则就不行。打个比方,对于下面这个有理分式。

对于该分式系数A可以使用结论1,因为x-2=0只有一个根x=2,B、C就不能使用该法则,因为(x-3)^2=0的解为二重根(

).

2-★:

(
可分解为含有n重单因式的项),

时另作讨论(见重根情况)

例2、计算:

(同济七版例题)

解:

,解得
(
均为单根)

故原式=

②复根代入法

(

可分解为含有若干二次单因式的项,
)

带入复根后,比较等式两边的结果可确定出相应系数。

(注:对于二次方程

有一对共轭复根

,其中
)

例3、计算:

(同济七版例题)

解:

,解得

※当然,

为该有理因式的单根,按照该方法的第二个等号法则可得,

,解得

在这里取其中一个即可,取

,代入公式即得

(分子分母同乘以分母的共轭复数)

于是

解得:

※在这里从留数定理共轭复根角度提供另一种解法。(不建议使用)

由于

有一对共轭复根,于是将有理分式拆为:

其中系数A按照单根代入法解出,这里主要讨论B、D的解法,B、D的分母是关于单复根的因式且未知数系数为1,这里按照单根代入法求即可,于是

于是上述拆分的结果为,

最后,将等式最后两项通分即可还原为实函数。

※当然,若不想解出相应的复根,我们也可以这样做。(较为简便)

的解为
,将拆分后的等式两边同时乘以(
)得,

,
代入
可得等式A,

我们来考虑如何处理这个等式,

为了将等式右边化为像BX+D一样的结构,我们得充分利用x²+x+1=0这个条件,将等式右侧分式中的分子、分母同乘以某个式子化为与x²+x+1=0相关结构,于是用x²+x+1去除以2x+1(记住是除以分母,这里用到了短除法,具体方法见上面那个图1),得待乘因式(1/2)x+1/4余3/4。故分子分母同乘以(1/2)x+1/4得。

所以

因此,

PS:显然这种方法对比复根代入法有一定的异曲同工之妙。当然有些有理函数用这种方法不会一次性得出结论(具体见下面19年真题数学二),但是可以简化我们的计算。如果是像上面这种情况,等式A等号右侧分子、分母都为一次,那么只需要将二次因式除以等式A等号右侧分母得出待乘因式,同乘过后,然后就是分子分母往二次因式结构去凑就可以得出相应结果。为什么上面这种情况不用二次因式除以分子,原因是除以分子会把分子化为整数,然后就得不到相应结果。

综上所述

原式

③重根代入法(难点)

我们接着讨论单值代入法中2-★里面当

的情况(
a=1的情况)

(
可分解为含有n重单因式的项)

例4、计算:

解:

对于

有三重根
根据分解原则可以形成3项式子

对于

有二重根
根据分解原则可以形成2项式子

于是

原式

※若

怎么办?见如下例题。

例5:计算

解:

首先,按照单值代入法,可得

PS:该题x=0为该有理因式的单根,故求系数A可以用单根代入法第二个等号后面的法则(也可以用第一个等号后面法则)。而x=1/2为重根,则求系数D只能用第一个等号法则。

对于未知数B、C,由于分母未知项系数不为1,若按照上述重根代入的方法将会出现错误。在这里,只需要将上述等式左右两边待求未知项系数变为1即可。

于是,按照重根代入法:

故B=2,C=-2。所以

原式

关于k重二次因式的情况,将②、③结合一下即可。(如果遇到这种题,建议就用老实的方法去处理,求导后代复数很麻烦的!)

四、真题运用

这里节选一个2019年数学二第16题。

例6:计算

解:

根据单根代入法

对于Dx+E,令

,解得

,代入公式即得

于是

解得:

※这里D、E我们可以用上述较为简便的方法求出,

的解为
,将拆分后的等式两边同时乘以(
)得,

代入

可得等式B,

显然等式B右侧分母为2次,分子为1次结构,这里就不能用像复根代入法那个例子一样的方法去求D、E,由于分母有二次结构,这里只能通过分母来化简此式。

最后将x²+x+1=0其中一个解代入得,

对比可得出相应系数。

PS:虽然这种方法不像复根代入法那个例子一样可以直接得出结果,但是这种方法大大简化了计算!

③根据重根代入法

综上,可得

原式

,故

五、结束语

我没学过相应的复变函数。以上方法是我之前在学《电路——邱关源》这本书后面的有个知识点叫“拉普拉斯变换”的时候受到的一些启发,当时教材上是几个关于复函数有理分式分解的问题,后来将其转化为在有理函数不定积分这方面的应用。

In The End.

Thanks for your reading!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值