【推荐系统】召回——重排序算法

本文探讨了多目标排序算法及其在电商推荐系统中的应用,重点介绍了LearnToRank算法如何通过综合考虑CTR点击率、CVR转化率等多个指标来优化商品排序。文章还讨论了排序过程中的规则设定及多目标排序的难点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重排序算法:learn to rank

 

 

为什么要有多目标排序

多目标排序的流程

candidate候选商品+ps模型+db数据库的特征排序,得出ctr点击率、cvr浏览转化率、collect收藏率、cart加购率、stay停留时常。

rerank使用上一步得出的模型预估分加起来,之前召回结果有一个队列,以分数为目标进行排序。

rule规则:同xx N出1(同一类目只能出1个);活动扶持、新品扶持、低俗打压;流量控制(不能给某些商品太多的曝光)。

点击率*转化率(点了之后买的概率)就是买不买 

多目标排序的难点

outline

learning  to rank

 

参考:

课程来源 https://www.bilibili.com/video/BV1yJ411F7bV?p=6

 

 

 

 

 

 

 

### 召回排序算法运行示意图 由于无法直接提供实际的截图,可以描述并模拟一个典型的召回排序流程及其可视化表示方式。 #### 召回阶段 在这个阶段,系统会处理大量的数据来初步筛选出可能相关的文档。假设有一个搜索引擎面对数以亿计的文章资源库: - **关键词匹配**:通过解析用户的查询词,在索引数据库中查找含有这些词语的文章ID列表。 - **热门推荐**:基于当前流行趋势或历史行为分析,挑选出一部分高热度条目作为补充选项。 - **语义理解**:利用自然语言处理技术,尝试捕捉查询背后的真正含义,进而定位到更精准的目标集。 ```mermaid graph LR; A[输入查询] --> B{多路召回}; B --> C[关键词召回]; B --> D[热点召回]; B --> E[语义召回]; C & D & E --> F(聚合候选集); ``` #### 排序阶段 一旦获得了较为精简但仍具有一定规模的结果池,则进入下一步——依据特定标准给各个候选项评分,并最终呈现最优质的前几名给用户查看。 ```mermaid graph LR; G((TopK 候选)) --> H{复杂模型评估}; H --> I[个性化特征加权]; H --> J[质量得分计算]; I & J --> K(输出最佳结果); ``` 上述图表展示了从原始海量资料逐步缩小范围直至得出最优解的过程[^1]。虽然这里是以文字形式表达,但在实际应用环境中,这类操作往往伴随着图形界面下的动态展示效果,比如进度条更新、实时反馈等交互特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值