QT与Halcon集成的机器视觉编程示例

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文介绍如何将QT框架与MVTec的Halcon机器视觉库结合,实现高效的视觉应用开发。QT是一个跨平台的C++图形用户界面库,而Halcon是提供丰富图像处理算法的专业软件。文章会探讨如何在QT中集成Halcon引擎,理解其核心操作符概念,并通过示例代码展示如何加载和显示图像,以及如何利用Halcon的高级功能进行模板匹配和形状匹配。此外,还将讨论如何在QT界面设计中结合Halcon的图像处理结果,并提供“halcon_engine”压缩包文件作为学习材料。最终目标是帮助开发者通过QT与Halcon的结合,快速构建出功能丰富的机器视觉应用。 机器视觉QT+Halcon演示Halcon引擎编程的示例

1. QT框架与Halcon库集成介绍

在现代的计算机视觉项目中,集成了图形用户界面(GUI)和强大的图像处理能力是一个常见需求。本章将介绍如何将QT框架与Halcon库进行集成,为开发者提供一个全面的视觉开发解决方案。QT作为C++开发的一个多功能GUI库,其跨平台性和强大的控件支持被广泛应用于应用程序的开发中。Halcon则是一个在机器视觉领域广泛使用的商业软件,提供了一整套用于图像处理、分析、模式识别等的算法。

集成QT和Halcon不仅可以实现复杂的图像处理算法,还能提供直观的用户操作界面。这种集成方式特别适用于需要复杂视觉处理和用户交互的场景,如自动化检测、质量控制等。接下来的章节将详细介绍集成的基础知识、关键步骤以及高级应用实例。

在此过程中,我们将学习Halcon的引擎编程基础,探索其独特的操作符系统,以及如何将图像处理与用户界面无缝集成。通过系统性的学习,读者将能够有效地利用QT和Halcon的优势,打造高效、稳定、友好的视觉应用程序。

2. Halcon引擎编程基础

2.1 Halcon引擎的工作原理

2.1.1 Halcon引擎的核心概念

Halcon是一种功能强大的机器视觉软件,广泛应用于工业自动化、质量控制和医疗成像等领域。其引擎的核心概念可以概括为以下几个方面:

  • 图像处理与分析 :Halcon提供丰富的图像处理函数库,能够执行图像的采集、滤波、形态学处理、特征提取等多种操作。
  • 视觉引导的测量 :通过其精准的测量工具,Halcon可以进行精确的几何测量,包括距离、角度、直径等。
  • 模式识别 :Halcon集成了强大的模式识别技术,包括模板匹配、物体分类、条码和二维码读取等。
  • 三维视觉 :Halcon具备三维视觉处理能力,可以处理点云数据,执行3D测量、建模和表面缺陷检测等。
  • 数据通讯与接口 :Halcon支持多种工业通讯协议,能够与各种外部设备进行交互,实现数据共享和设备控制。
2.1.2 Halcon引擎与其他视觉引擎的区别

Halcon引擎相对于其他视觉引擎,其主要区别在于:

  • 高性能算法 :Halcon使用了优化的算法实现高效的图像处理,相比其他工具包,其在速度和准确性方面具有明显优势。
  • 跨平台支持 :Halcon支持多种操作系统,包括Windows、Linux和实时操作系统,保证了应用的灵活性。
  • 工业级稳定性 :Halcon设计之初就考虑了工业环境的苛刻需求,因此具有极高的稳定性和可靠性。
  • 易用性 :Halcon提供了丰富的视觉组件,包括控件、函数库等,并且拥有直观的编程接口和友好的用户界面,使得开发更加高效。

2.2 Halcon引擎的安装与配置

2.2.1 系统兼容性及安装步骤

Halcon软件需要在具备一定配置的计算机上安装,以保证其运行效率和稳定性。通常要求如下:

  • 操作系统:支持Windows 7/10、Linux(如Ubuntu、Red Hat等)。
  • CPU:多核处理器,推荐具有较高的时钟频率。
  • 内存:至少8GB RAM,推荐更多。
  • 硬盘:建议使用SSD,以便快速访问数据。

安装步骤如下:

  1. 下载Halcon安装文件。
  2. 运行安装程序并遵循安装向导的指示完成安装。
  3. 在安装过程中,按照提示配置许可密钥。
  4. 安装完成后重启计算机。
2.2.2 配置环境变量与库文件路径

为了使Halcon软件能够正确运行,需要配置环境变量和库文件路径。具体步骤通常包括:

  • 在Windows系统中,需要设置 HALCONROOT 环境变量,指向Halcon的安装路径。
  • 在Linux系统中,需要将Halcon的库文件路径添加到 LD_LIBRARY_PATH 环境变量中。
  • 也可以通过在Halcon软件的配置文件中指定库文件路径,例如在 halcond.conf 文件中添加库路径配置。

以下是一个Linux系统环境变量配置的例子:

export HALCONROOT=/opt/halcon
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HALCONROOT/lib

完成以上配置后,Halcon将能够在指定的环境中正常工作。

3. Halcon操作符概念

3.1 Halcon基本操作符使用

3.1.1 图像处理操作符简介

图像处理操作符是Halcon中用于图像预处理、特征提取、图像分析和图像变换的一系列功能。这些操作符是构建复杂图像处理和视觉任务的基础模块。在Halton中,图像处理操作符可以细分为几类,包括但不限于:

  • 形态学操作符 :这些操作符用于执行图像的腐蚀、膨胀、开运算和闭运算等形态学处理,以去除噪声或突出图像中的特定结构。
  • 滤波操作符 :滤波操作符包括高斯滤波、中值滤波等,用于平滑图像、降低噪声等。
  • 几何变换操作符 :这一类操作符可以进行图像的旋转、缩放、平移等几何变换。
  • 颜色处理操作符 :用于颜色空间转换、颜色分割等处理。

3.1.2 基本操作符的应用实例

为了更好地理解基本操作符,下面提供一个应用实例,该实例展示了如何使用Halcon操作符进行基本的图像处理步骤。

假设我们有一个简单的图像处理任务:在一张带有噪声的图像中提取边缘信息,并显示结果。

首先,我们可以使用滤波操作符 mean_image 对图像进行平滑处理,以减少噪声影响。然后,使用边缘检测操作符 edges_sub_pix 来提取边缘信息。最后,使用 threshold 操作符来获取二值化图像,从而更容易地观察到边缘。

以下是相应的代码示例:

* 读取图像
read_image(Image, 'path_to_image')

* 对图像进行滤波
mean_image(Image, SmoothedImage, 'circle', 3, 3)

* 边缘检测
edges_sub_pix(SmoothedImage, Edges, 'canny', 1, 20, 40)

* 阈值分割,生成二值图像
threshold(Edges, Region, 100, 255)

* 显示结果
dev_display(Region)

在此示例中, mean_image 函数的参数指定了使用圆形窗口,大小为3x3像素。 edges_sub_pix 函数使用Canny边缘检测算法,其阈值参数根据具体图像进行了调整。 threshold 函数则用于二值化处理,其中的参数需要根据边缘检测结果进行设定。

3.2 Halcon复杂操作符理解

3.2.1 模式识别操作符

Halcon框架提供了丰富的模式识别操作符,包括但不限于:

  • 形状匹配 :利用形状特征对目标进行识别和定位。
  • 训练分类器 :如支持向量机(SVM)、k近邻(k-NN)等用于二值、多类和回归任务的分类器。
  • 文本识别 :光学字符识别(OCR)操作符可以识别图像中的文字。

使用这些操作符时,通常需要先进行特征提取,然后用提取的特征训练分类器,最后对新的图像进行识别。

3.2.2 3D视觉操作符

Halcon支持3D视觉处理,提供了如下操作符:

  • 3D重建 :通过立体视觉方法从多个角度的图像中重建3D模型。
  • 3D匹配 :匹配3D模型与场景中的物体,进行定位和导航。
  • 3D表面分析 :对3D表面进行分析,提取几何特征。

例如,使用3D重建功能时,我们可能需要设置多个相机位置,然后使用立体匹配技术(如 rectifStereo stereoCalibrateCameras )对场景进行立体校准,从而获得深度信息。

3.3 操作符的优化与实践

在实践中,对操作符的使用进行优化是提高图像处理系统性能的关键。优化方法可能包括:

  • 并行处理 :利用Halcon的并行处理能力,如多核CPU计算,以加速图像处理过程。
  • 参数调整 :根据实际应用场景调整操作符参数,以获得最佳性能。
  • 预处理简化 :对输入图像进行适当的预处理,以减少后续操作符的计算负担。

在进行图像处理时,开发者应根据具体情况对这些操作符进行适当的调整和优化,以确保系统的效率和准确度。

接下来,我们将继续探讨在Halcon中进行图像加载与显示的实际操作和示例,进一步理解如何有效地处理和展示图像数据。

4. 图像加载与显示示例

4.1 图像读取与格式转换

图像的读取与格式转换是图像处理中非常基础但又极其重要的环节。正确理解并掌握这些操作,可以为后续的图像处理和分析打下坚实的基础。

4.1.1 支持的图像格式解析

Halcon 提供了丰富的图像读取格式支持。从标准的 BMP、JPEG、TIFF 到专业的工业相机输出格式如 HDevelop Project、HImage、HObject 等,Halcon 都能支持。此外,Halcon 还可以读取视频文件,并逐帧进行处理。对于开发者来说,了解如何在Halcon中加载各种图像格式,是进行图像处理的前提。

* 读取标准图像格式
read_image(Image, 'test_image.png')

* 读取视频文件中的某一帧
read_image(Image, 'video.mp4', 10)  // 读取第10帧

对于代码的逐行解释,首先我们调用了 read_image 函数,这个函数第一个参数是图像变量 Image ,它将用于存储读取的图像数据。第二个参数是文件路径,包括文件名和扩展名。对于视频文件的读取,还需要指定帧序号,如上例中的 10

4.1.2 图像数据类型的转换方法

图像数据类型在处理过程中可能需要转换。比如,为了提高处理速度,可能需要将彩色图像转换为灰度图像;或者根据特定需求,需要对图像进行缩放、旋转等变换。

* 彩色图像转灰度图像
rgb1_to_gray(ImageRGB, ImageGray)

* 图像缩放
scale_image_size(Image, ImageResized, 320, 240)

在上述代码块中, rgb1_to_gray 函数实现了从彩色图像到灰度图像的转换。第一个参数为原始的彩色图像变量 ImageRGB ,第二个参数为转换后的灰度图像变量 ImageGray scale_image_size 函数用于图像缩放, Image 为原始图像变量, ImageResized 为缩放后的图像变量,而320和240为缩放后图像的宽度和高度。

4.2 图像显示与窗口管理

良好的图像显示和窗口管理对于图像处理的直观理解、调试和演示都十分重要。Halcon 提供了功能丰富的工具用于图像的显示和窗口管理。

4.2.1 创建与管理显示窗口

显示窗口是图像展示的平台,Halcon 中可以使用 create_window 函数创建窗口。

* 创建一个新窗口
create_window(WindowHandle)

这里 WindowHandle 是一个输出参数,代表新创建窗口的句柄。有了窗口句柄,就可以在此窗口中显示图像。

4.2.2 图像显示的属性设置

Halcon 的图像显示不仅限于简单的图像输出,还可以设置图像的显示属性。例如,可以调整图像的亮度、对比度,或者为图像叠加信息等。

* 设置图像显示的亮度和对比度
set_display_font(WindowHandle, 16, 'mono', 'true', 'false')
set_display_foreground_color(WindowHandle, 255, 0, 0)  // 设置前景色为红色

在上面的代码中, set_display_font 函数设置了窗口中显示文本的字体、大小、字体类型等属性。 set_display_foreground_color 函数用于设置窗口中的前景色。需要注意的是,设置显示属性对于调试程序非常有帮助,特别是在展示图像处理结果时,突出显示关键信息。

通过本章节的介绍,我们掌握了如何在Halcon中加载和显示图像,包括图像的读取、格式转换、创建显示窗口以及设置图像显示属性。这些技能对于进行图像处理和分析是不可或缺的。在后续章节中,我们将进一步深入探讨图像处理的高级技术,比如模板匹配、形状匹配等,以及如何将Halcon与QT集成,实现更复杂的视觉应用。

5. 模板匹配和形状匹配应用

5.1 模板匹配技术原理

5.1.1 匹配算法的选择与比较

在进行模板匹配时,选择合适的算法对于识别准确性和处理速度至关重要。在Halcon中,主要的模板匹配算法包括灰度相关、归一化相关以及快速匹配等。每种方法有其特定的应用场景和优势。

  • 灰度相关 是最基本的模板匹配方法,通过计算待匹配图像与模板图像之间的相关性来确定匹配位置。该方法简单且直观,但在光照变化较大时性能会显著下降。
  • 归一化相关 通过归一化处理增强了模板匹配的鲁棒性,能够在不同的光照和对比度条件下进行匹配。它计算成本较高,但匹配精度更高。

  • 快速匹配 方法则是针对效率进行优化的算法,适合于实时性要求较高的场景。这种方法需要权衡速度与准确性的关系。

当选择匹配算法时,应该考虑应用场景的特定需求,如对于速度和精度的要求,以及图像自身的特征(如亮度变化范围、是否包含噪声等)。

5.1.2 模板匹配的工作流程

模板匹配通常遵循以下工作流程:

  1. 图像预处理 :这一步骤包括灰度化、滤波去噪、直方图均衡化等,目的是提高图像质量并减少噪声对匹配的影响。
  2. 选择模板图像 :从待检测图像中选取一个或多个代表性的区域作为模板。模板的选择对匹配结果至关重要。
  3. 设置匹配参数 :根据选择的匹配算法设置相关参数,如模板大小、搜索区域、匹配阈值等。
  4. 执行匹配 :使用选择的算法执行模板匹配,并生成匹配结果。结果通常包含匹配点的位置、匹配得分等信息。
  5. 结果验证 :根据匹配得分验证匹配结果的有效性。得分越高的匹配点表示模板与实际图像的相似度越高。

  6. 后处理 :对匹配结果进行优化处理,比如剔除低得分的匹配点,进一步提高匹配结果的准确性。

这一流程中,图像预处理和后处理是提高匹配准确性的关键步骤,它们直接影响最终的匹配效果。

5.2 形状匹配应用案例

5.2.1 形状匹配的基本步骤

形状匹配是指通过分析图像中对象的形状特征来进行匹配的技术。在Halcon中,形状匹配的基本步骤包括:

  1. 定义形状模型 :首先需要定义一个形状模型,这可以通过训练样本(包含形状特征的图像)来实现。Halcon提供了一系列的工具来提取和训练形状特征。

  2. 设置匹配参数 :与模板匹配类似,形状匹配也需要设置一系列参数,包括匹配精度、最大旋转角度、缩放比例等。

  3. 执行形状匹配 :利用Halcon库中的形状匹配操作符(如 find_shape_model )来执行匹配。结果会返回形状在图像中的位置以及匹配得分。

  4. 结果评估 :评估匹配结果,并根据需求调整匹配参数以优化匹配质量。

  5. 后处理 :对结果进行必要的后处理,比如通过几何变换来校正匹配结果,或者使用逻辑运算来合并多个匹配结果。

形状匹配通常比模板匹配更复杂,因为它依赖于图像中对象的几何特征而不是简单的像素强度。

5.2.2 形状匹配在工业检测中的应用

工业检测是一个形状匹配应用十分广泛的领域。在自动化生产线上,形状匹配可以用来检测零件是否存在缺陷、是否缺失或者是否安装到位。

例如,在组装电子产品的过程中,形状匹配可以用来识别电路板上元件的正确位置和方向。通过训练Halcon的形状模型识别特定的元件轮廓,可以自动化地检测元件是否正确安装,从而提高生产效率和产品质量。

在本应用中,形状匹配需要在不同视角和光照条件下仍然保持高准确率。因此,选择合适的匹配算法和参数,以及适当的预处理和后处理步骤,对于实现稳定可靠的检测至关重要。

graph LR
A[图像输入] --> B[预处理]
B --> C[定义形状模型]
C --> D[设置匹配参数]
D --> E[执行形状匹配]
E --> F[结果评估]
F --> G[后处理]
G --> H[输出检测结果]

以上流程图展示了工业检测中形状匹配的大致工作流程。在实际应用中,各个环节都需要根据具体情况进行调整和优化。

形状匹配技术在工业检测中的应用是提高自动化水平和生产效率的重要手段。随着机器视觉技术的不断发展,形状匹配技术将会在更广泛的领域得到应用,并持续改进和创新。

6. QT界面中集成Halcon图像处理

在现代软件开发中,跨平台图形用户界面(GUI)与专业图像处理功能的结合变得尤为重要。QT框架和Halcon库的集成提供了一个强大的平台,可开发出既有丰富用户交互又具备高效图像处理能力的软件应用。在本章节中,我们将深入探讨如何在QT界面中集成Halcon图像处理功能,并详细介绍相关的实现机制和自定义控件的创建。

6.1 QT与Halcon交互机制

QT框架与Halcon库之间的交互是通过QT的信号和槽机制来实现的,这一机制允许对象之间进行通信。此外,还需理解事件驱动和数据共享在集成过程中的作用。

6.1.1 QT信号与槽机制在Halcon中的应用

信号与槽是QT框架中最核心的通信机制,它用于响应各种事件或操作,如按钮点击、图像加载等。在与Halcon集成时,我们可以将Halcon的处理结果作为信号发射,并在QT界面上创建相应的槽函数来响应这些信号,实现数据的更新和视图的渲染。

信号与槽的基本用法示例

假设我们需要在用户选择了一个图像文件后,调用Halcon的图像处理函数,并将结果显示在QT的界面窗口中。这一过程可以用伪代码表示如下:

// QT端定义信号
void imageReadyForProcessing(HObject image);

// Halcon端处理图像后发射信号
void processImage(HObject inputImage) {
    // 假设这是一个Halcon处理函数
    HObject processedImage;
    halconFunction(inputImage, &processedImage);
    // 发射信号,将处理后的图像传递给QT界面
    emit imageReadyForProcessing(processedImage);
}

// QT端定义槽函数响应信号
void displayImage(HObject image) {
    // 使用Halcon的绘图函数显示图像
    HalconCpp::HV窗口 = HalconCpp::OpenWindow(0, 0, 640, 480, 'black', &窗口句柄);
    HalconCpp::DispObj(image, 窗口);
}

在此代码中, processImage 函数代表Halcon处理图像的部分,而 displayImage 是QT界面上的槽函数,用于显示处理后的图像。信号 imageReadyForProcessing 连接了这两个端口,实现了数据从Halcon到QT的流动。

6.1.2 事件驱动与数据共享

QT框架的事件驱动机制意味着应用程序的状态变化是由事件引起的,例如用户输入、系统通知等。Halcon的图像处理结果可以通过QT事件机制传入界面组件中进行更新。数据共享则是指在两个框架间共享图像数据结构,以实现高效的数据处理与渲染。

事件与数据共享的协作

在QT与Halcon集成的应用中,通常会有以下步骤:

  1. QT界面触发事件(如按钮点击),该事件被捕捉并转换为Halcon的图像处理请求。
  2. Halcon处理请求后,产生结果并通过QT的信号传递。
  3. QT界面捕获信号并调用相应的槽函数,更新界面显示处理后的图像。

6.2 实现自定义的Halcon控件

为了在QT中更直观地集成和操作Halcon图像处理功能,创建自定义控件是实现此目的的有效方法。

6.2.1 创建自定义控件步骤

创建自定义控件涉及以下步骤:

  1. 继承QT界面控件,并在其上集成Halcon功能。
  2. 覆盖控件的部分方法,以集成Halcon处理逻辑。
  3. 创建控件的信号和槽,实现Halcon功能的响应。

自定义控件类结构示例

class HalconImageWidget : public QWidget {
    Q_OBJECT
public:
    HalconImageWidget(QWidget *parent = nullptr) : QWidget(parent) {
        // 初始化Halcon图像控件
        setupHalconControl();
    }

public slots:
    void onLoadImage() {
        // 加载图像,并进行Halcon处理
        HObject image;
        ReadImage(&image, "path/to/image.jpg");
        // ... 对图像进行处理 ...
        // 将结果Halcon图像对象传递给QT界面
        updateImageDisplay(image);
    }

protected:
    void paintEvent(QPaintEvent* event) override {
        // 重写paintEvent来绘制图像
        if (hImage.isValid()) {
            // 使用Halcon函数在QWidget上绘制图像
            HalconCpp::HV窗口 = HalconCpp::OpenWindow(0, 0, hImage.Width(), hImage.Height(), 'black', &窗口句柄);
            HalconCpp::DispObj(hImage, 窗口);
        }
    }

private:
    HObject hImage; // 存储Halcon图像对象
    // ... 其他Halcon相关成员变量和方法 ...
};

在这个自定义控件类 HalconImageWidget 中, onLoadImage 槽函数负责加载图像,进行Halcon处理,并将处理后的图像对象传递给QT的显示逻辑。

6.2.2 控件的封装与优化

创建自定义控件后,还需要进行适当的封装和优化,以保证控件的可重用性和高效性能。

控件封装

良好的封装应确保控件对外提供清晰且稳定的接口,隐藏内部的实现细节。这可以通过定义一套清晰的公共接口(如信号和槽)来实现。此外,将Halcon图像处理功能封装成函数库或模块,可以提高代码的可维护性和重用性。

控件性能优化

性能优化可能涉及多方面,如减少图像处理过程中的内存分配,使用异步处理减少界面冻结时间,以及针对特定算法的优化等。在实现时要特别注意同步与异步的处理,以及Halcon与QT数据转换的开销。

示例代码分析

// 异步加载和处理图像,避免界面冻结
void HalconImageWidget::onLoadImage() {
    std::thread([this]() {
        HObject image;
        ReadImage(&image, "path/to/image.jpg");
        // ... 对图像进行处理 ...

        // 使用信号发射处理后的图像,确保线程安全
        emit imageReadyForDisplay(image);

    }).detach(); // 分离线程,让其独立执行
}

// 在主线程中接收异步处理完成的信号,并更新图像显示
void HalconImageWidget::onImageReadyForDisplay(HObject image) {
    hImage = image;
    update(); // 请求QT界面重绘
}

在上述示例中,我们使用了C++11的线程( std::thread )来实现异步加载和处理图像,通过信号和槽机制跨线程安全地传递数据,并更新界面显示处理后的图像。

在深入到具体的控件实现和性能优化中,开发者需关注于各细节的平衡,以确保用户界面友好、操作响应迅速且处理效率高。通过对QT界面与Halcon图像处理功能的精巧结合,我们能够构建出功能强大且操作直观的软件应用,满足不同行业对图像处理的需求。

7. Halcon的高级功能应用

Halcon作为一个先进的机器视觉软件,提供了大量的高级功能以应对复杂的视觉任务。本章将探讨Halcon的高级图像处理技术以及在多平台部署和优化的一些策略。

7.1 高级图像处理技术

Halcon提供了多种高级图像处理技术,其中包括光学字符识别(OCR)和图像配准与测量等。

7.1.1 光学字符识别(OCR)

Halcon中的OCR功能强大,可以识别多种字体和语言的字符。实现OCR功能的关键在于选择合适的模型和训练数据。

* 读取训练好的OCR模型
read_ocr_model ('OCR_A_MultiClass.hocr', OCRHandle)

* 读取包含文字的图像
read_image (Image, 'text_image.png')

* 检测图像中的文字区域
threshold (Image, Regions, 100, 255)
connection (Regions, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 400, 99999)

* 使用OCR模型进行识别
get_ocr_trainrun_param (OCRHandle, 'timeout', Timeout)
set_ocr_trainrun_param (OCRHandle, 'timeout', Timeout)
do_ocr_multi_class (Image, OCRHandle, Rows, Columns, Confidences, ResultString)

* 输出识别结果
write_string (ResultString, 'recognized_text.txt')

在这段代码中,首先读取了预训练的OCR模型,并加载了一张包含文字的图像。之后,通过阈值分割和区域连接的方法找到了可能包含文字的区域,最后使用OCR模型识别这些区域中的文字,并将识别结果输出到一个文本文件中。

7.1.2 图像配准与测量

在许多工业应用中,图像配准与测量是不可或缺的。Halcon提供了多种图像配准方法,如基于特征的配准(比如 SURF、SIFT 等算法)。

* 读取需要配准的两张图像
read_image (Image1, 'reference_image.png')
read_image (Image2, 'to_be_registered_image.png')

* 使用 SURF 特征进行配准
tuple_genGRAYSURF (Image1, Features1)
tuple_genGRAYSURF (Image2, Features2)
find_tuple_genGRAYSURF_matching (Features1, Features2, Matches)

* 根据匹配点对图像进行几何变换
get_tuple_genmatching_obj_params (Matches, 'num', NumberMatches)
row := 0
col := 0
for i := 1 to NumberMatches by 1
  get_tuple_genmatching_obj_params (Matches, 'row', row, i)
  get_tuple_genmatching_obj_params (Matches, 'col', col, i)
  row(row, i) := row
  col(col, i) := col
endfor
 affine_trans_point2 (row, col, HomMat2DTrans, row_trans, col_trans)

* 在原图上显示配准后的图像
affine_trans_image (Image2, Image2Registered, HomMat2DTrans, 'constant', 0)
dev_display (Image1)
dev_display (Image2Registered)

在这段代码中,首先读取了两张待配准的图像。随后,使用 SURF 特征提取方法提取了图像的特征,并找到两个图像中相对应的特征点对。根据这些匹配点,计算出仿射变换矩阵,最后使用该矩阵对第二张图像进行变换,使其与第一张图像配准。

7.2 Halcon在多平台的部署与优化

由于Halcon支持跨平台开发,因此在不同的操作系统上部署Halcon应用是可能的,但可能需要考虑特定平台的优化策略。

7.2.1 Halcon跨平台部署策略

在不同操作系统上部署Halcon时,需要注意库文件和环境变量的设置。例如,在Windows上可能需要注册动态链接库(DLL),而在Linux和macOS上则需要设置LD_LIBRARY_PATH等环境变量。

7.2.2 性能调优与案例分析

为了优化Halcon程序的性能,需要从多个维度进行考虑,比如减少算法复杂度、使用并行处理和多线程等。以下是一个性能优化的示例:

* 创建线程用于并行处理
parallel_start (0, 4)

* 将图像数据分割成多个子区域进行处理
split_regionrectangle (Region, SubRegions, 4, 'evenly', 'false', 'true')

* 在每个线程中处理子区域
for i := 0 to 3 by 1
  thread_start (i, worker, SubRegions[i])
endfor

* 合并线程处理结果
thread_wait (0, 'all')
concat_obj (Results, Result, 1)

parallel_end ()

在这个例子中,通过使用 parallel_start thread_start 方法,我们将图像处理工作分割成四个并行任务,每个任务处理图像的一个子区域。这样可以显著加快整体处理速度。

通过本章内容,我们可以看到Halcon的高级功能不仅强大,而且在应用时也非常灵活。以上介绍的只是冰山一角,Halcon还提供了更多高级功能和优化策略等待我们去发掘和应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文介绍如何将QT框架与MVTec的Halcon机器视觉库结合,实现高效的视觉应用开发。QT是一个跨平台的C++图形用户界面库,而Halcon是提供丰富图像处理算法的专业软件。文章会探讨如何在QT中集成Halcon引擎,理解其核心操作符概念,并通过示例代码展示如何加载和显示图像,以及如何利用Halcon的高级功能进行模板匹配和形状匹配。此外,还将讨论如何在QT界面设计中结合Halcon的图像处理结果,并提供“halcon_engine”压缩包文件作为学习材料。最终目标是帮助开发者通过QT与Halcon的结合,快速构建出功能丰富的机器视觉应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值