tensorflow教程 android,tensorflow - 在 Android 中 集成 tensorflow 并使用训练后的模型

本文详细介绍了如何在Android应用中集成Tensorflow,并使用训练后的模型进行预测。通过TensorFlowInferenceInterface类,将模型放在assets文件夹下,无需额外加载so库。关键步骤包括:准备模型.pb文件,引入tensorflow-android依赖,调用feed、run和fetch函数进行数据注入、模型运行和结果获取。文章提供了具体的Kotlin代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次集成使用 tensorflow ,内心还是有些激动的。开始时候,并不知道怎么进行,其实是一脸茫然的,然后就看了不少文章,关于集成的,大致有了个思路,然后就开始集成测试。这次就总结下具体集成思路和步骤。

方式: tensorflow android 而不是 tensorflow lite

基本思路

首先,在 android 上集成 tensorflow ,我们可以确定使用 TensorFlowInferenceInterface 类,不知道的自己去查资料。通过阅读官方给的源码,我们大概就可以知道所需要的内容和怎么使用。

TensorFlowInferenceInterface 构造函数

首先,在实例化此类的时候,我们需要提供 assets 和 modelName ,所以可以确定要将模型放在 assets 文件夹下,同时传入模型名字即可。其次,在初始化的时候首先执行的 prepareNativeRuntime() 函数,可以确定要加载相关的 so 库,并且在集成后初始化后,不需要在业务代码中去重复加载,因为这里已经加载过了。

模型

模型放在 assets 文件夹下

so 库

so 库 不需要去加载

public TensorFlowInferenceInterface(AssetManager assetManager, String model) {

prepareNativeRuntime();

this.modelName = model;

this.g = new Graph();

this.sess = new Session(g);

this.runner = sess.runner();

....

}

private void prepareNativeRuntime() {

····

try {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值