面板平滑转移回归(PSTR)分析

本文介绍了面板平滑转移回归(PSTR)模型的建模过程,包括规范、估计和评估阶段。通过R语言实现PSTR模型,探讨了数据初始化、模型估计与评估的方法,如线性测试、野生 bootstrapping 和集群野生 bootstrapping。此外,还展示了如何绘制PSTR模型的估计结果,以直观理解模型中非线性效应的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

建模过程包括三个阶段:规范,估计和评估。该软件包提供的工具可帮助用户进行模型规范测试,进行PSTR模型评估以及进行模型评估。

在程序包中实现了集群依赖性和异方差性一致性测试。

还实现了wild bootstrap和cluster wild bootstrap测试。

并行计算(作为选项)在某些函数中实现,尤其是引导测试。因此,该程序包适合在超级计算服务器上运行多个核心的任务。

  

数据

 “Hansen99”的数据集来提供示例。 

初始化

您可以通过执行创建PSTR类的新对象

 
 
#> Summary of the model:
#> ---------------------------------------------------------------------------
#>   time horizon sample size = 14,  number of individuals = 560
#> ---------------------------------------------------------------------------
#> Dependent variable:  inva
#> ---------------------------------------------------------------------------
#> Explanatory variables in the linear part:
#>   dt_75 dt_76 dt_77 dt_78 dt_79 dt_80 dt_81 dt_82 dt_83 dt_84 dt_85 dt_86 dt_87 vala debta cfa sales
#> ---------------------------------------------------------------------------
#> Explanatory variables in the non-linear part:
#>   vala debta cfa sales
#> ---------------------------------------------------------------------------
#> Potential transition variable(s) to be tested:
#>   vala
#> ###########################################################################
#> ***************************************************************************
#> Results of the linearity (homogeneity) tests:
#> ***************************************************************************
#> Sequence of homogeneity tests for selecting number of switches 'm':
#> ***************************************************************************
#> ###########################################################################

它说使用了数据集“Hansen99”,因变量是“inva”,第4列到第20列的数据中的变量是线性部分的解释变量(尽管你可以写下它们的名称),非线性部分中的解释变量是“indep_k”中的四个,潜在的转换变量是“vala”(Tobin的Q)。

 

 

以下代码执行线性测试

 
#> ###########################################################################
#> ***************************************************************************
#> Results of the linearity (ho
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值