ID生成规则

package com.zhiche.tools.application;

import java.util.Random;

public class IdSnowFlake {
	private final long workerId;//数据中心(5位)
    private final long datacenterId;//节点(5位)
    private final long idepoch;//毫秒级时间(41位)
    private long sequence;//毫秒内序列(12位)

    
    private static final long datacenterIdShift = 17L;
    private static final long workerIdShift = 12L;
    private static final long timestampLeftShift = 22L;
    private static final long maxWorkerId = 31L;
    private static final long maxDatacenterId = 31L;
    private static final long sequenceMask = 4095L;//序列编号共12位,每节点每毫秒生成4096个ID

    private long lastTimestamp = -1L;//可以根据需要设定一个最早时间,任何时间不得小于最早时间,默认不设限制。
    private long defaultTimestamp = 1288834974657L;//可以根据实情进行时间的修改。
    private static final Random r = new Random();
    
    /**
     * 数据中心=random,节点中心=random,毫秒内序列(12位)=0,毫秒级时间(41位)=now
     */
    public IdSnowFlake() {
        this(System.currentTimeMillis());
    }
    
    /**
     * 数据中心=random,节点中心=random,毫秒内序列(12位)=0
     * @param idepoch 毫秒级时间(41位)
     */
    public IdSnowFlake(long idepoch) {
        this(r.nextInt((int) maxWorkerId), r.nextInt((int) maxDatacenterId), 0, idepoch);
    }
    
    /**
     * 毫秒内序列 = 0, 毫秒级时间 = now, [常用的构造为这个构造]
     * @param workerId 数据中心(5位)
     * @param datacenterId 节点(5位)
     */
    public IdSnowFlake(long workerId, long datacenterId) {
        this(workerId, datacenterId, 0, System.currentTimeMillis());
    }
    
    /**
     * 毫秒级时间 = now
     * @param workerId 数据中心(5位)
     * @param datacenterId 节点(5位)
     * @param sequence 毫秒内序列(12位)
     */
    public IdSnowFlake(long workerId, long datacenterId, long sequence) {
    	this(workerId, datacenterId, sequence, System.currentTimeMillis());
    }

    /**
     * 数据中心,节点中心,毫秒内序列(12位),毫秒级时间(41位)
     * @param workerId 数据中心(5位)
     * @param datacenterId 节点(5位)
     * @param sequence 毫秒内序列(12位)
     * @param idepoch 毫秒级时间(41位)
     */
    public IdSnowFlake(long workerId, long datacenterId, long sequence, long idepoch) {
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
        this.idepoch = idepoch;
        if (workerId < 0 || workerId > maxWorkerId) {
            throw new IllegalArgumentException(String.format("非法workerId 数据中心(5位)应大于0而小于%d,而当前值为:%d", maxWorkerId,workerId));
        }
        if (datacenterId < 0 || datacenterId > maxDatacenterId) {
            throw new IllegalArgumentException(String.format("非法datacenterId 节点(5位)应大于0而小于%d,而当前值为:%d ", maxDatacenterId , datacenterId));
        }
    }
    
    /**
     * @return 数据中心5位
     */
    public long getDatacenterId() {
        return datacenterId;
    }
    
    public long getIdepoch() {
        return idepoch;
    }
    
    public long getlastTimeStamp() {
        return lastTimestamp;
    }
    
    public long getSequence() {
        return sequence;
    }
    
    /**
     * @return 节点5位
     */
    public long getWorkerId() {
        return workerId;
    }
    
    /**
     * @return 当前时间
     */
    public long getTime() {
        return System.currentTimeMillis();
    }

    /**
     * @return 得到long类型id
     */
    public long getId() {
        long id = nextId();
        return id;
    }
    
    /**
     * 设置最早时间
     * @param lastTimestamp 最早时间
     */
    public void setLastTimestamp(long lastTimestamp) {
		this.lastTimestamp = lastTimestamp;
	}
    
	private synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new IllegalStateException(String.format("时间早于最低时间:%d",lastTimestamp));
        }
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        lastTimestamp = timestamp;
        //a|b的意思就是把a和b按位或, 按位或的意思就是先把a和b都换成2进制,然后用或操作
        //[也可以改成直接+操作,直接+操作效率高,但是会有极低概率产生重复ID]
        long id = ((timestamp - defaultTimestamp) << timestampLeftShift)//前41位
                | (datacenterId << datacenterIdShift)//中间前5位
                | (workerId << workerIdShift)//中间后5位
                | sequence;//最后12位
/*        long id = ((timestamp - defaultTimestamp) << timestampLeftShift)//前41位
        		+ (datacenterId << datacenterIdShift)//中间前5位
        		+ (workerId << workerIdShift)//中间后5位
        		+ sequence;//最后12位
*/       
        return id;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    @Override
    public String toString() {
        final StringBuilder sb = new StringBuilder("IdWorker{");
        sb.append("workerId=").append(workerId);
        sb.append(", datacenterId=").append(datacenterId);
        sb.append(", idepoch=").append(idepoch);
        sb.append(", lastTimestamp=").append(lastTimestamp);
        sb.append(", sequence=").append(sequence);
        sb.append('}');
        return sb.toString();
    }
}
package cn.huiyunche.base.service.utils;

import cn.huiyunche.tools.application.IdSnowFlake;

/**
 * @ClassName: UniquenessFlagUnits
 * @Description: 唯一性标示
 * @author: Aaron
 * @date: 2016年7月25日 上午10:50:38
 */
public class UniquenessFlagUnits {

    /**
     * @param prifix 前缀
     * @return
     * @Title: generateUniquenessFlag
     * @Description: 根据前缀生成唯一性标示
     * @return: String
     */
    public static String generateUniquenessFlag(String prifix) {
        IdSnowFlake id = new IdSnowFlake();
        return String.valueOf(prifix + id.getId());
    }
}

 

转载于:https://my.oschina.net/u/2608890/blog/2247931

高并发分布式系统中生成全局唯一Id汇总 数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。 单纯的生成全局ID并不是什么难题,但是生成ID通常要满足分片的一些要求: 1 不能有单点故障。 2 以时间为序,或者ID里包含时间。这样一是可以少一个索引,二是冷热数据容易分离。 3 可以控制ShardingId。比如某一个用户的文章要放在同一个分片内,这样查询效率高,修改也容易。 4 不要太长,最好64bit。使用long比较好操作,如果是96bit,那就要各种移位相当的不方便,还有可能有些组件不能支持这么大的ID。 一 twitter twitter在把存储系统从MySQL迁移到Cassandra的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake。 1 41位的时间序列(精确到毫秒,41位的长度可以使用69年) 2 10位的机器标识(10位的长度最多支持部署1024个节点) 3 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号) 最高位是符号位,始终为0。 优点:高性能,低延迟;独立的应用;按时间有序。 缺点:需要独立的开发和部署。 原理 java 实现代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 public class IdWorker { private final long workerId; private final static long twepoch = 1288834974657L; private long sequence = 0L; private final static long workerIdBits = 4L; public final static long maxWorkerId = -1L ^ -1L << workerIdBits; private final static long sequenceBits = 10L; private final static long workerIdShift = sequenceBits; private final static long timestampLeftShift = sequenceBits + workerIdBits; public final static long sequenceMask = -1L ^ -1L < this.maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format( "worker Id can't be greater than %d or less than 0", this.maxWorkerId)); } this.workerId = workerId; } public synchronized long nextId() { long timestamp = this.timeGen(); if (this.lastTimestamp == timestamp) { this.sequence = (this.sequence + 1) & this.sequenceMask; if (this.sequence == 0) { System.out.println("###########" + sequenceMask); timestamp = this.tilNextMillis(this.lastTimestamp); } } else { this.sequence = 0; } if (timestamp < this.lastTimestamp) { try { throw new Exception( String.format( "Clock moved backwards. Refusing to generate id for %d milliseconds", this.lastTimestamp - timestamp)); } catch (Exception e) { e.printStackTrace(); } } this.lastTimestamp = timestamp; long nextId = ((timestamp - twepoch << timestampLeftShift)) | (this.workerId << this.workerIdShift) | (this.sequence); System.out.println("timestamp:" + timestamp + ",timestampLeftShift:" + timestampLeftShift + ",nextId:" + nextId + ",workerId:" + workerId + ",sequence:" + sequence); return nextId; } private long tilNextMillis(final long lastTimestamp) { long timestamp = this.timeGen(); while (timestamp <= lastTimestamp) { timestamp = this.timeGen(); } return timestamp; } private long timeGen() { return System.currentTimeMillis(); } public static void main(String[] args){ IdWorker worker2 = new IdWorker(2); System.out.println(worker2.nextId()); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值