parzen窗估计如何进行结果分析_实现一下模式识别(一)Parzen窗估计

本文介绍了如何使用Parzen窗估计进行非参数估计,通过Python实现了一个简单的分类器。首先,详细解释了Parzen窗估计的算法过程,并提供了用于分类的样本数据。接着,给出了计算每个类别的概率的代码,并根据概率判断数据点所属类别。最后,通过matplotlib绘制3D散点图,展示了数据点和分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己计划实现一遍模式识别里的内容。

Parzen窗估计是非参数估计。我在非参数技术——Parzen窗估计方法文章和非参数估计-Parzen窗口函数法文章里面整理出了算法基本过程:利用第一篇博客给出的样本数据对给定的数据进行分类。分类的方法就是根据公式分别求出对于三个类的数值。公式是

求出来数值之后,比较大小,给定数据属于数值较大的一类。运算通过numpy包实现,通过循环得出数值,进行比较。

代码实现如下,计算的结果和非参数技术——Parzen窗估计方法文中给的内容基本一致。

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# parzen窗法

# 原始数据

# w1

data1=[[0.28,1.31,-6.2],

[0.07,0.58,-0.78],

[1.54,2.01,-1.63],

[-0.44,1.18,-4.32],

[-0.81,0.21,5.73],

[1.52,3.16,2.77],

[2.20,2.42,-0.19],

[0.91,1.94,6.21],

[0.65,1.93,4.38],

[-0.26,0.82,-0.96]

]

w1=np.mat(data1)

# w2

data2=[[0.011,1.03,-0.21],

[1.27,1.28,0.08],

[0.13,3.12,0.16],

[-0.21,1.23,-0.11],

[-2.18,1.39,-0.19],

[0.34,1.96,-0.16],

[-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值