halcon之NCC匹配

NCC(归一化交叉相关性)是一种常用的图像处理技术,用于评估图像间的相似性,尤其在光照变化的场景下。通过积分图像预计算,可以显著提高NCC匹配的效率,满足实时检测的需求。该文介绍了NCC的数学原理、算法步骤,并展示了基于积分图的快速NCC匹配如何提升计算速度,适用于物体轻微变形、模糊图像、边缘不清和有纹理的图像匹配。此外,文章还比较了NCC与形状匹配的优缺点,并列举了相关函数的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NCC匹配

 

基于Normalized cross correlation(NCC)用来比较两幅图像的相似程度已经是一个常见的图像处理手段。在工业生产环节检测、监控领域对对象检测与识别均有应用。NCC算法可以有效降低光照对图像比较结果的影响。而且NCC最终结果在0到1之间,所以特别容易量化比较结果,只要给出一个阈值就可以判断结果的好与坏。传统的NCC比较方法比较耗时,虽然可以通过调整窗口大小和每次检测的步长矩形部分优化,但是对工业生产检测然后不能达到实时需求,通过积分图像实现预计算,比较模板图像与生产出电子版之间的细微差异,可以帮助企业提高产品质量,减少次品出厂率,把控质量。

 

一:NCC相关的数学知识

 

什么是NCC - (normalized cross correlation)归一化的交叉相关性,是数学上统计两组数据之间是否有关系的判断方法,貌似搞大数据分析比较流行相关性分析和计算。正常的计算公式如下:

 

image.png

 

mxn表示窗口大小,这样的计算复杂度就为O(m x n x M x N)。从上面公式就可以看出其中均值和平方和可以通过积分图预计算得到,对于模板和目标图像大小一致的应用场景来说

NCC的计算公式可以表示为如下:

 

image.png

其中根据积分图像可以提前计算出任意窗口大小和与平方和,这样就对

 

image.png

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值