Python CNN卷积神经网络代码实现

博客探讨了在Python中使用CNN进行图像分类时,训练集大小和卷积核数量对模型性能的影响。实验结果显示,当训练集较小,增加卷积核数量对预测性能提升有限,而适当增加训练集数据能显著提高模型表现。结论建议在资源允许的情况下,同时增大训练数据量和卷积核数量以优化模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1 # -*- coding: utf-8 -*-
 2 """
 3 Created on Wed Nov 21 17:32:28 2018
 4 
 5 @author: zhen
 6 """
 7 
 8 import tensorflow as tf
 9 from tensorflow.examples.tutorials.mnist import input_data
10 
11 mnist = input_data.read_data_sets('C:/Users/zhen/MNIST_data_bak/', one_hot=True)
12 sess = tf.InteractiveSession()
13 
14 def weight_variable(shape):
15     initial = tf.truncated_normal(shape, stddev=0.1)
16     return tf.Variable(initial)
17 
18 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值