超几何分布

博客介绍了超几何分布的数学模型,给出其概率公式、期望公式及表示方法。通过多个应用实例展示超几何分布在不同场景的体现,如产品次品、摸球、选代表等问题。还通过高考和模拟题典例剖析,总结超几何分布特点及解题要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

一、数学模型

  • 超几何分布

一般的,在含有\(M\)件次品的\(N\)件产品中,任取\(n\)件,其中恰有\(X\)件次品,则事件\(\{X=k\}\)发生的概率为\(P(X=k)=\cfrac{C_M^k\cdot C_{N-M}^{n-k}}{C_N^n}\),(\(k=0,1,2,\cdots,m\)),其中\(m=min\{M,n\}\),且\(n\leq N\)\(M\leq N\)\(n\)\(M\)\(N\in N^*\),称这样的分布列为超几何分布列,如果随机变量\(X\)的分布列具有下表的形式,则称随机变量\(X\)服从超几何分布。

992978-20190318111447520-520882369.jpg

如果\(X\)服从参数为\(n\)\(M\)\(N\)的超几何分布,记作\(X\sim H(n,M,N)\),其数学期望\(E(X)=\cfrac{nM}{N}\)

二、应用实例

①10件产品中含有3件次品,从中任意取4件产品,所取出的次品件数服从超几何分布;

②袋中有8红球4白球,从中任意摸出5个球,摸出红球个数服从超几何分布;

③某班45个学生,女生20人,现从中选7人做代表,代表中所含女生的人数服从超几何分布;

④15张卡片中含有5件写有“奖”字,从中任意取3件产品,所取出的卡片中含有奖字的卡片张数服从超几何分布;

⑤10位代表中有5位支持候选人\(A\),随机采访3人,其中支持候选人\(A\)的人数服从超几何分布;

⑥盘中装有10个粽子,豆沙粽2个,肉粽3个,白粽5个,从中任选3个,取到的豆沙粽的个数服从超几何分布;

注意:在具体题目中,可能需要将上述的三类数据转化为两类数据:豆沙粽子和非豆沙粽子。

三、典例剖析

例1【2015高考天津卷】

992978-20190319205753397-1883618321.jpg
992978-20190319205754854-1543922391.jpg
992978-20190319205756539-800643220.jpg

解后反思:

①超几何分布的特点是:总体有A,B两类元素(如男女、正品次品等)组成,从总体中不放回的取出一定数目的元素,其中含有一类元素的个数即服从超几何分布;

②在具体题目中给定的数据种类比较多时,可能需要将其转化为需要的两类。比如本题目第(1)问中,为求解选出的4人中有2个种子选手,且种子选手来自同一协会,我们需要将甲乙两个协会的给定人数转化为两类:情形一,一类为甲协会的2个种子选手,另一类为3个非种子选手,此时将乙协会的两个人不予考虑;情形二,一类为乙协会的3个种子选手,另一类为3个非种子选手,此时将甲协会的两个人不予考虑;本题目第(2)问中,需要将8人分为两类:一类是5个种子选手,另一类是3个非种子选手。

③超几何分布中随机变量取各个值的概率是古典概型,使用古典概型的分式进行计算。

例2【2018聊城模拟】
992978-20190320103959553-2111172242.png

转载于:https://www.cnblogs.com/wanghai0666/p/10534758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值