计算机语言forcui,Cui, Bin

崔斌教授专注于数据库、数据挖掘领域的研究,提出了新的数据表示方法和索引结构,以处理复杂数据,包括空间对象、图像和生物信息。他的工作涵盖了数据组织、查询处理优化和大数据管理与挖掘,尤其是在缓解维度灾难问题上的技术。此外,他还致力于查询优化技术,设计了查询重写、表达式处理和缓冲管理方案,提升数据库系统性能,并在国际会议上担任重要角色。他在复杂数据挖掘方面的工作也取得了显著成就,如社交媒体数据的挖掘技术,改进了搜索引擎、多媒体搜索和资源推荐等应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

401af5508fcd50950ac10217a34e205b.png

Cui, Bin

Professor

Research Interests: Database, data mining

Office Phone: 86-10-6276 5825

Email: bin.cui@pku.edu.cn

Cui, Binis a professor in the Department of Computer Science and technology, School of EECS, and has served as the Director of Institute of Network Computing and Information Systems since 2016. He obtained his B.Sc. from Xi'an Jiaotong University in 1996, and Ph.D. from National University of Singapore in 2004 respectively. His research interests include database system architectures, query and index techniques, big data management and mining.

Dr. Cui has published more than 100 research papers, and most of them are published in top-tier conferences and journals, such as SIGMOD, VLDB, TKDE, and TOIS. He has served in the Technical Program Committee of various international conferences including SIGMOD, VLDB, ICDE and KDD, and as Vice PC Chair of ICDE 2011&2018, Demo Co-Chair of ICDE 2014, Area Chair of VLDB 2014, PC Co-Chair of APWeb 2015 and WAIM 2016. He is serving as a Trustee Board Member of VLDB Endowment, is also in the Editorial Board of VLDB Journal, Distributed and Parallel Databases, and Information Systems, and was an associate editor of TKDE (2009-2013). He was awarded Microsoft Young Professorship award (2008), CCF Young Scientist award (2009), and appointed as Cheung Kong Professor in 2016.

Dr. Cui has more than ten research projects including NSFC, 973 programs, 863 project, etc. His research achievements are summarized as follows:

1) Data organization and indexing techniques: One major research topic in data management field is to make the data management system support more complex data types, such as spatial objects, images and bio-information. He proposed some new data representation methods and indexing structures to facilitate the organization of different types of complex data, designed multi-feature extraction, feature fusing, and dimension transformation techniques to alleviate the dimensionality curse problem. The indexes proposed can efficiently support the query processing and data mining applications.

2) Query processing and optimization: This is the key factor to improve the performance of database systems. Relational database systems can support simple query tasks; however, many complex query tasks are not well supports due to the constraints of relational model and SQL. He focused on the query processing techniques for different query types and system environments, and proposed new solutions for query reformulation, query expression, P2P query processing, and buffer management to improve the performance of database systems.

Data mining techniques on Complex data: The complex data, such as social media data, have some characteristics, including large volume, heterogeneity, rich structure and correlation, which bring great challenge to researchers in data management and mining fields. He proposed new data mining techniques, which integrate both the content and structural features to mine the embedded knowledge of big data. These methods can improve the Internet applications and user experiences, such as search engine, multimedia search and resource recommendation, etc.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值