图像超分辨率重建基础代码包

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:图像超分辨率重建旨在通过算法提升低分辨率图像质量,分为传统方法和基于深度学习的方法。基础代码包"basic_sr.zip"提供基础代码,包含数据集、模型构建、训练脚本、测试脚本和预测脚本等,有助于学习和实践图像超分辨率重建技术。 图像超分辨率重建基础代码

1. 图像超分辨率重建概述

在数字图像处理领域,图像超分辨率重建(Super-Resolution, SR)是一个关键的研究课题,旨在从低分辨率(Low Resolution, LR)图像重建出高分辨率(High Resolution, HR)图像。随着数字媒体的广泛应用和用户对图像质量要求的提升,图像超分辨率技术受到了广泛关注。超分辨率重建不仅是视觉体验的提升,而且在视频监控、卫星遥感、医学成像等领域也有着广泛的应用。

1.1 图像超分辨率的意义

图像超分辨率技术的核心在于利用算法从一幅或多幅低分辨率图像中恢复出高分辨率图像,这意味着我们可以从老旧或压缩质量较低的图像中获得更为清晰的细节。该技术依赖于计算机视觉和信号处理领域的最新进展,尤其是在深度学习推动下,取得了突破性的进展。

1.2 超分辨率重建的技术挑战

实现高质量的图像超分辨率重建并非易事,它面临诸多技术挑战。一方面,从单张图像中恢复细节信息需要算法能够合理地填补和推测丢失的像素信息;另一方面,当处理包含运动模糊、噪声干扰等复杂情况的图像时,对算法的鲁棒性提出了更高的要求。这些挑战促进了多种技术方法的发展,包括传统方法、基于统计的方法和近年来的深度学习方法。

随着技术的不断演进,超分辨率重建已逐渐成为提高图像质量的有效手段,它不仅能够改善用户体验,而且在多个专业领域中发挥着重要的作用。在接下来的章节中,我们将详细探讨传统方法和深度学习在图像超分辨率重建中的应用,以及如何评估和改进超分辨率算法的性能。

2. 传统超分辨率方法简述

2.1 插值算法的原理与应用

2.1.1 最近邻插值

最近邻插值(Nearest Neighbor Interpolation)是最简单的插值算法之一,其基本思想是在目标图像中,每个像素的值由其在源图像中最近邻的像素值决定。此方法计算简单,但容易产生锯齿状的效果,尤其是在放大较大的图像时。最近邻插值在一些需要快速处理的应用中仍有其价值,但其在图像质量上的限制使得它不适合需要高质量输出的场合。

import cv2
import numpy as np

# 加载一张图像
image = cv2.imread('input_image.jpg')
# 获取图像的高度和宽度
height, width = image.shape[:2]

# 定义放大倍数,例如2倍
scale_factor = 2

# 计算新的高度和宽度
new_height, new_width = height * scale_factor, width * scale_factor

# 创建最近邻插值算法的配置信息
nn_interpolation = cv2.INTER_NEAREST

# 进行图像放大
resized_image = cv2.resize(image, (new_width, new_height), interpolation=nn_interpolation)

# 保存放大后的图像
cv2.imwrite('nearest_neighbor_image.jpg', resized_image)

2.1.2 双线性插值

双线性插值(Bilinear Interpolation)是解决图像放大问题的另一种常用方法,它考虑了目标像素周围的4个邻近像素,通过线性插值计算出目标像素的值。这种方法比最近邻插值有更好的图像质量,可以产生更平滑的图像,但计算量相对更大。双线性插值在保持图像边缘相对平滑的同时,仍保留了图像的一些细节。

# 使用双线性插值进行图像放大
bilinear_interpolation = cv2.INTER_LINEAR

# 进行图像放大
resized_image = cv2.resize(image, (new_width, new_height), interpolation=bilinear_interpolation)

# 保存放大后的图像
cv2.imwrite('bilinear_image.jpg', resized_image)

2.1.3 双三次插值

双三次插值(Bicubic Interpolation)是一种更高级的插值方法,它使用目标像素周围的16个邻近像素来计算其值。这种方法在放大图像时能够产生更加平滑且质量更高的结果,但计算时间也最长。双三次插值尤其适用于对图像质量要求很高的场合,比如医学图像处理和高清视频放大。

# 使用双三次插值进行图像放大
bicubic_interpolation = cv2.INTER_CUBIC

# 进行图像放大
resized_image = cv2.resize(image, (new_width, new_height), interpolation=bicubic_interpolation)

# 保存放大后的图像
cv2.imwrite('bicubic_image.jpg', resized_image)

2.2 统计方法的理论与实践

2.2.1 维纳滤波方法

维纳滤波(Wiener Filter)是一种统计方法,用于图像恢复与去噪。在超分辨率重建中,维纳滤波可以用来估计高频细节的丢失。它假设图像具有一定的局部统计特性,并利用这些特性来最小化均方误差。维纳滤波能够根据图像内容调整其滤波特性,因此在处理含有噪声的图像时非常有效。然而,维纳滤波的参数调整通常依赖于先验知识,这使得它在实际应用中不如其他方法方便。

from scipy.signal import wiener
import matplotlib.pyplot as plt

# 假设图像已经加载到变量image中
# 添加一些噪声来模拟低分辨率图像
noisy_image = image + np.random.randn(*image.shape) * 10

# 使用维纳滤波处理噪声图像
filtered_image = wiener(noisy_image, mysize=(3, 3))

# 显示原图、噪声图和滤波后图像
plt.figure(figsize=(15, 5))
plt.subplot(131), plt.imshow(image, cmap='gray'), plt.title('Original Image')
plt.subplot(132), plt.imshow(noisy_image, cmap='gray'), plt.title('Noisy Image')
plt.subplot(133), plt.imshow(filtered_image, cmap='gray'), plt.title('Wiener Filtered Image')
plt.show()

2.2.2 约束最小二乘法

约束最小二乘法(Constrained Least Squares)是一种基于线性代数的优化技术,适用于图像的超分辨率重建。在最小化残差平方和的同时,此方法引入了平滑性约束来保持图像细节。通过调整权重参数,约束最小二乘法可以平衡重建误差与平滑度的关系,从而得到细节更丰富的图像。然而,确定最佳权重参数需要一定的经验,这限制了它的普及应用。

# 假设有一个线性系统Ax=b,其中A是退化矩阵,x是我们想要恢复的图像,b是观测到的模糊图像
# 这里我们使用简单的伪代码来表示这个过程
A = ... # 退化矩阵
b = ... # 观测到的模糊图像
# 利用约束最小二乘法求解x
x = np.linalg.lstsq(A, b, rcond=None)
# x即为恢复后的图像

2.2.3 稀疏表示方法

稀疏表示(Sparse Representation)方法认为图像可以通过一系列稀疏基表示,而超分辨率重建就是寻找这种表示的过程。在稀疏表示框架下,高分辨率图像可以被看作是在一个过完备字典上的稀疏系数和字典原子的线性组合。使用诸如正则化技术来促进稀疏性,这种方法能够在一定程度上恢复图像细节。稀疏表示方法在处理纹理和边缘等细节丰富的图像区域时非常有效,但计算和存储需求较高。

# 使用稀疏表示方法的伪代码
# 假设我们已经拥有训练得到的字典D和稀疏系数alpha
D = ... # 过完备字典
alpha = ... # 稀疏系数

# 通过稀疏表示重建高分辨率图像
highres_image = D.dot(alpha)

# highres_image即为重建后的高分辨率图像

以上简述了几种传统超分辨率重建方法的原理和实践应用。通过这些方法的应用,可以初步实现图像质量的提升,但它们通常受限于计算复杂度和效果的局限性。在接下来的章节中,我们将深入了解如何使用深度学习技术来解决这些问题。

3. 深度学习在超分辨率中的应用

深度学习为图像超分辨率重建领域带来了革命性的进步,其中卷积神经网络(CNN)是核心技术。本章节将深入探讨深度学习在超分辨率重建中的应用,从基础理论到具体的模型架构,再到实际操作和应用。

3.1 深度学习基础理论

3.1.1 卷积神经网络结构

卷积神经网络(CNN)是一种深度学习架构,尤其适合于处理图像等网格数据。CNN通过其独特的卷积层、池化层和全连接层的组合,能够自动提取图像特征并进行分类或回归分析。

卷积层 是 CNN 的核心组件,其通过滤波器(卷积核)在输入数据上进行滑动,从而提取局部特征。卷积层能够保留图像的空间关系,是特征提取的关键。

import torch.nn as nn

# 构建一个简单的卷积层
class SimpleConvLayer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size):
        super(SimpleConvLayer, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size)

    def forward(self, x):
        return self.conv(x)

# 示例:输入图像通道数为1,输出通道数为32,卷积核大小为3x3的卷积层
conv_layer = SimpleConvLayer(in_channels=1, out_channels=32, kernel_size=3)

池化层 通常跟在卷积层之后,其作用是降低特征的空间维度,即降低特征图(feature map)的尺寸。池化操作有助于减少计算量,并防止过拟合。

3.1.2 反向传播算法和梯度下降

反向传播算法是深度学习中用于训练神经网络的核心算法。通过计算损失函数关于网络参数的梯度,可以调整网络参数以最小化损失函数。

梯度下降是优化算法的一种,用于更新网络权重。其基本思想是沿着损失函数的梯度下降方向,以一定的学习率更新网络权重,直到找到损失函数的最小值。

3.1.3 损失函数与优化器选择

在训练神经网络时,损失函数(cost function 或 objective function)用于评估网络预测值和真实值之间的差异。常见的损失函数包括均方误差(MSE)、交叉熵损失等。

优化器则用于调整网络参数,常见的优化器包括随机梯度下降(SGD)、Adam、RMSprop 等。不同的优化器有各自的特点,如学习速率适应性、动量等,选择合适的优化器可以提高网络训练的效率。

3.2 深度学习模型架构详解

3.2.1 卷积层的超分辨率应用

在超分辨率领域中,卷积层被用于构建从低分辨率到高分辨率图像的映射关系。通过对卷积核进行训练学习,网络能够自动学习到从低分辨特征到高分辨特征的转换。

3.2.2 激活函数与归一化技巧

激活函数 是指在神经网络中增加非线性的函数。常见的激活函数包括ReLU、tanh、sigmoid等。在超分辨率模型中,合适的激活函数能够提升网络的表达能力。

归一化技巧 ,例如批量归一化(Batch Normalization),能够加速训练过程,并提升模型的泛化能力。归一化操作通过对特征图进行归一化处理,减轻了内部协变量偏移(Internal Covariate Shift)的问题。

3.2.3 残差网络与空洞卷积

残差网络(ResNet) 通过引入残差连接解决了深层网络中的梯度消失问题,允许构建更深的网络结构,进一步提高了特征提取的能力。

空洞卷积(Dilated Convolution) 是一种特殊类型的卷积,它通过引入空洞来增加卷积层的感受野(field of view),能够捕捉到更大范围内的图像特征,对于图像超分辨率任务来说尤其重要。

class DilatedConvolutionLayer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, dilation):
        super(DilatedConvolutionLayer, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, dilation=dilation)

    def forward(self, x):
        return self.conv(x)

以上对深度学习在超分辨率应用中的基础理论和模型架构的分析,为后续章节中具体深度学习模型的应用打下了坚实的基础。在接下来的章节中,我们将探索一些典型的深度学习超分辨率模型,并通过实战演练,体验这些模型在图像超分辨率重建中的强大功能。

4. 基础代码包内容概述

4.1 代码包的安装与配置

4.1.1 环境依赖和安装指令

对于大多数深度学习项目,构建一个稳定且高效的开发环境是至关重要的。通常,一个典型的深度学习环境包括一个特定版本的Python解释器、深度学习框架(如TensorFlow或PyTorch)、CUDA(用于GPU计算加速)以及cuDNN(深度神经网络加速库)。

以PyTorch为例,安装代码如下:

# 安装Python和pip
sudo apt-get install python3 python3-pip

# 安装PyTorch
pip3 install torch torchvision torchaudio

# 若需要使用GPU版本
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu101

确保CUDA和cuDNN版本与PyTorch版本兼容。此外,还需安装其他依赖项,如OpenCV、NumPy、SciPy等。

4.1.2 数据预处理工具的使用

数据预处理是深度学习流程中不可或缺的一步。工具如OpenCV可用于图像读取、处理,而NumPy和SciPy用于数学运算和图像转换。预处理步骤可能包括图像缩放、格式转换、归一化等。

import cv2
import numpy as np

# 加载图像
image = cv2.imread('path/to/image.jpg')

# 将图像转换为所需的维度和数据类型
image = np.transpose(image, (2, 0, 1))  # 将图像通道转换为第一个维度
image = image / 255.0  # 归一化到[0, 1]区间

# 将NumPy数组转换为PyTorch张量
import torch
image_tensor = torch.tensor(image, dtype=torch.float32)

4.1.3 模型训练前的准备

在模型训练之前,需要准备数据集和数据加载器。PyTorch中的 torch.utils.data.Dataset torch.utils.data.DataLoader 类非常方便地帮助我们完成这些工作。

from torch.utils.data import DataLoader, Dataset

class SRDataset(Dataset):
    def __init__(self):
        # 初始化数据集,加载图像对
        pass

    def __len__(self):
        # 返回数据集大小
        pass

    def __getitem__(self, idx):
        # 根据索引idx返回数据样本
        pass

# 实例化数据集和数据加载器
dataset = SRDataset()
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# 使用数据加载器进行迭代训练
for lr_img, hr_img in dataloader:
    # 这里将进行模型训练的一次迭代
    pass

4.2 代码结构与功能模块

4.2.1 数据加载与处理模块

在数据加载与处理模块中,需要对输入的数据进行一系列的操作以确保它们适合输入到网络模型中。这包括尺寸调整、归一化、数据增强、批处理等。这个模块是整个超分辨率重建流程的基石。

import torchvision.transforms as transforms

# 定义数据预处理流程
data_transform = transforms.Compose([
    transforms.Resize((input_height, input_width)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

# 应用数据预处理
processed_data = data_transform(data)

4.2.2 网络模型定义与初始化模块

网络模型是超分辨率重建的核心,定义了数据如何通过网络流动并最终得到高分辨率图像。代码包内通常会有一个单独的模块专门用于定义网络结构。

import torch.nn as nn

class SuperResolutionNet(nn.Module):
    def __init__(self):
        super(SuperResolutionNet, self).__init__()
        # 定义模型层
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        # ...其他层定义

    def forward(self, x):
        # 定义前向传播过程
        x = self.conv1(x)
        # ...其他层的调用
        return x

# 实例化模型
model = SuperResolutionNet()

4.2.3 训练与评估模块

训练模块负责模型参数的更新,而评估模块则负责在特定的评估指标下衡量模型性能。这两个模块是互相协作的,训练模块的输出需要通过评估模块来反馈模型的训练效果。

# 训练循环示例
def train(model, dataloader, optimizer, criterion):
    model.train()  # 设置模型为训练模式
    for inputs, targets in dataloader:
        optimizer.zero_grad()  # 梯度清零
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, targets)  # 计算损失
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数

# 评估循环示例
def evaluate(model, dataloader, criterion):
    model.eval()  # 设置模型为评估模式
    total_loss = 0
    with torch.no_grad():  # 不计算梯度
        for inputs, targets in dataloader:
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            total_loss += loss.item()
    return total_loss / len(dataloader)  # 返回平均损失

通过这些模块,代码包为超分辨率重建任务提供了系统化的实现路径,使得无论是初学者还是资深开发者都能快速上手并深入探索超分辨率重建的奥秘。

5. 深度学习模型:SRCNN、VDSR、ESPCN、FSRCNN

5.1 SRCNN模型的原理与实现

5.1.1 模型结构与参数设计

SRCNN(Super-Resolution Convolutional Neural Network)是最早的卷积神经网络之一,专门用于图像超分辨率重建。SRCNN模型通常包含三个卷积层,分别对应特征提取、非线性映射和重建三个步骤。

第一个卷积层通常使用大量的滤波器(例如,64个滤波器,滤波器大小为9x9)从低分辨率图像中提取特征。提取的特征随后被传递到第二个卷积层,该层的滤波器数量通常较少(例如,32个滤波器,滤波器大小为1x1),以进行非线性映射。最后,第三个卷积层将映射的特征转化为高分辨率图像,通常使用数量等于上采样倍数的滤波器(例如,上采样2倍时,使用2个滤波器,滤波器大小为5x5)。

在深度学习框架(如TensorFlow或PyTorch)中,这些卷积层可以使用如下代码来实现:

# 假设输入数据为x,是一个低分辨率图像的batch
x = Conv2D(64, (9, 9), padding='valid', activation='relu')(x)
x = Conv2D(32, (1, 1), padding='valid', activation='relu')(x)
x = Conv2D(upscale_factor**2, (5, 5), padding='valid')(x)

# 输出为x,即超分辨率重建后的图像

在这个代码块中, Conv2D 代表二维卷积操作,括号中的第一个参数为滤波器数量,第二个参数为滤波器大小。 padding='valid' 指定了不使用填充, activation='relu' 表示使用ReLU激活函数。

5.1.2 损失函数与优化算法

SRCNN模型的训练通常使用均方误差(MSE)作为损失函数,该损失函数度量重建的高分辨率图像与真实高分辨率图像之间的差异。损失函数定义如下:

def mean_squared_error(y_true, y_pred):
    return tf.reduce_mean(tf.square(y_true - y_pred))

模型的优化则常常使用随机梯度下降(SGD)或其变种如Adam或RMSprop。优化器的选择依赖于特定任务的需求,它们各自具有不同的学习速率调整机制。

5.1.3 训练细节与结果展示

SRCNN模型的训练过程涉及到数据预处理、模型初始化、迭代训练及模型保存。训练细节包括批量大小、学习率、迭代次数以及如何评估模型性能。一个基本的训练过程可以用以下伪代码概括:

# 数据预处理
train_images, test_images = preprocess_images()

# 模型构建
model = build_model()

# 模型编译
model.compile(optimizer=adam, loss=mean_squared_error)

# 模型训练
model.fit(train_images, train_labels, epochs=200, batch_size=64)

# 模型评估
test_loss = model.evaluate(test_images, test_labels)

# 结果展示
plt.imshow(process_for_display(model.predict(test_image)))

在实际应用中,模型训练结果通过PSNR和SSIM等指标进行定量评估,同时也会有直观的图像对比展示超分辨率重建的效果。

5.2 VDSR与其他模型对比分析

5.2.1 VDSR模型的创新点与优势

VDSR(Very Deep Super-Resolution)模型相比于SRCNN,在网络深度上做了显著的增强。VDSR使用了一个较深的网络结构(约20个卷积层)并引入了残差学习的概念,即通过学习输入图像与高分辨率图像之间的残差来提高重建质量。

VDSR的关键优势在于它能够捕捉复杂的非线性映射关系,这使得它在提升图像细节和锐化方面具有更好的表现。不过,更深的网络意味着更长的训练时间和更高的计算成本。

5.2.2 ESPCN模型的轻量级特性

ESPCN(Efficient Sub-Pixel Convolutional Neural Network)模型在实现上有所不同,它使用了子像素卷积层来有效地放大特征图。相较于其他模型,ESPCN模型在保持高性能的同时,显著减少了模型参数的数量。

通过在卷积操作中引入一个重排列层(rearrangement layer),ESPCN可以在一次操作中同时完成上采样和卷积,这大幅提升了计算效率。代码片段如下:

# 上采样函数,采用sub-pixel层
def subpixel_upsampling(x):
    x = tf.nn.depth_to_space(x, upscale_factor)
    return x

这里使用了TensorFlow中的 depth_to_space 函数,它通过重排列操作来实现上采样。

5.2.3 FSRCNN模型的快速与高效

FSRCNN(Fast Super-Resolution Convolutional Neural Network)是另一种轻量级且高效的超分辨率模型。FSRCNN的主要贡献在于它将原始图像通过一个非常深的卷积网络进行非线性映射,并在映射后的特征图上应用一个快速的上采样过程。

FSRCNN的核心优势在于其精简的网络结构和快速的重建速度。它适合于那些对实时性要求较高的应用场景。尽管网络较为轻量,但FSRCNN仍能够保持与其他深度学习模型相当的图像超分辨率性能。

5.2.4 模型性能的对比

对不同超分辨率模型的性能评估,一般从PSNR和SSIM值来衡量。例如,以下是一个实验中模型性能的比较表格:

| 模型 | PSNR (dB) | SSIM | 训练时间 | 模型大小 | |------------|-----------|-------|----------|----------| | SRCNN | 30.49 | 0.862 | 6h | 57.3KB | | VDSR | 31.35 | 0.883 | 24h | 612KB | | ESPCN | 30.75 | 0.865 | 4h | 9.5KB | | FSRCNN | 30.67 | 0.870 | 2h | 12.6KB |

表格展示了每种模型的PSNR值、SSIM值、训练时间以及模型参数数量。从中可以看出,尽管VDSR在PSNR和SSIM值上表现更好,但其需要更长的训练时间和更大的模型大小。

在实际应用中,需要根据应用场景和资源限制来选择合适的模型。例如,对于要求快速响应的移动应用,FSRCNN可能是更好的选择;而对于追求极限性能的场景,VDSR则可能更加适合。

6. 数据集与模型训练参数设置

在深度学习领域,正确的数据集选择和模型训练参数设定是提高模型性能的关键。接下来,让我们详细探讨这些方面。

6.1 常用数据集介绍与选择

在超分辨率重建任务中,几个常见的数据集被广泛用于训练和评估模型:

6.1.1 DIV2K数据集的特点

DIV2K数据集是一个高质量的图像超分辨率数据集,由2000张高清图像和800张验证图像组成,支持8倍至16倍的放大任务。这些图像涵盖了多种类型,从自然风景到人造物体都有,具有很好的多样性。DIV2K提供了一个统一的基准,使得不同模型和算法能够在相同的条件下进行比较。

6.1.2 BSDS100与Set5的适用场景

  • BSDS100 :加州大学伯克利分校提供的数据集,包含100张图像,适用于标准测试。虽然图像数量相对较少,但图像质量较高,经常用于快速评估模型性能。
  • Set5 :一个小型基准数据集,仅有5张图像,适合对模型进行初步评估或作为精调训练的测试集。由于图像数量有限,它不适合大规模模型训练,但可作为性能评估的参考。

在选择数据集时,我们应考虑所需放大倍率、图像质量、数据集大小和多样性等因素。

6.2 训练参数的调试与优化

训练深度学习模型时,一系列的参数调整对最终模型的性能有着重大影响。以下是一些关键参数的调整与优化策略:

6.2.1 学习率与批次大小的调整

  • 学习率 :这是一个关键的超参数,决定了权重更新的速度。学习率过高可能导致模型无法收敛,而过低则会导致训练时间过长或陷入局部最优。常用的学习率衰减策略或自适应学习率优化器(如Adam)来动态调整学习率。
  • 批次大小 :批次大小影响模型训练的内存占用和速度,也会影响模型的泛化能力。较小的批次能够提供更稳定的梯度估计,但较大的批次可以利用硬件加速。

6.2.2 正则化与梯度裁剪策略

  • 正则化 :L1和L2正则化可以减少模型的复杂度,避免过拟合,帮助模型更好地泛化到未见过的数据上。
  • 梯度裁剪 :在训练过程中,梯度裁剪可以防止梯度爆炸问题,特别是在处理深层网络时非常有用。

6.2.3 验证集与早停法的应用

  • 验证集 :通过在验证集上监控模型性能,可以调整模型复杂度,避免过拟合。
  • 早停法 (Early Stopping):当验证集的性能不再提升时提前终止训练,这有助于保留模型在未见数据上的最佳性能。

优化训练参数是一个迭代过程,需要根据具体任务和数据集特点来调整。通过科学地设置和调整这些参数,可以显著提高模型的训练效率和性能。

在接下来的章节中,我们将探索模型性能评估指标,并提供详细的评估方法与策略。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:图像超分辨率重建旨在通过算法提升低分辨率图像质量,分为传统方法和基于深度学习的方法。基础代码包"basic_sr.zip"提供基础代码,包含数据集、模型构建、训练脚本、测试脚本和预测脚本等,有助于学习和实践图像超分辨率重建技术。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值