比赛链接
本文发布于博客园,会跟随补题进度实时更新,若您在其他平台阅读到此文,请前往博客园获取更好的阅读体验。
跳转链接:https://www.cnblogs.com/TianTianChaoFangDe/p/18799072
开题 + 补题情况
和前三场比起来前期的签到题发挥稳定了许多,没有被卡很久,不过 1001 还是因为自己读错题挂了三发,不太应该。
虽然 rank 比之前有提升了,但是还是没有开出除了签到题之外的题,开的题价值不大,自己能力的提升还任重道远啊。
1006 - 进步
第一题就开的这个题。
此题涉及到修改某一天的进步量,查询某个时间区间的进步量,所以是单点修改,区间查询,很容易想到使用树状数组来维护。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
template<typename T>
struct BIT {
std::vector<T> t;
int n;
BIT(int n) {
this -> n = n;
t = std::vector<T>(n + 1, T(0));
}
int lowbit(int x) {
return x & -x;
}
void add(int ix, T v) {
for(int i = ix;i <= n;i += lowbit(i)) {
t[i] += v;
}
}
T query(int ix) {
T res = 0;
for(int i = ix;i > 0;i -= lowbit(i)) {
res += t[i];
}
return res;
}
};
void solve()
{
int n, q;std::cin >> n >> q;
std::vector<i64> a(n + 1);
for(int i = 1;i <= n;i ++) {
std::cin >> a[i];
}
BIT<i64> t(n + 1);
for(int i = 1;i <= n;i ++) {
t.add(i, a[i]);
}
i64 ans = 0;
int sum = 0;
while(q --) {
int op;std::cin >> op;
if(op == 1) {
int x, y;std::cin >> x >> y;
t.add(x, y - a[x]);
a[x] = y;
} else {
sum ++;
int l, r;std::cin >> l >> r;
i64 e = t.query(r);
i64 s = t.query(l - 1);
e = e / 100;
s = s / 100;
ans ^= ((e - s) * sum);
}
}
std::cout << ans << '\n';
}
1008 - 制衡
一开始看到题目,以为是一个需要人类智慧的 DP 题,直到发现了这两个重要线索:
- 允许某些段留空。
- \(j\) 的最大值刚好就是 \(k\)。
那么转化一下就可以发现,我们的选择,只会往下方及右下方转移。
那么 DP 转移方程就很明显了:\(dp_{i, j} = \max(dp_{i - 1, l}) + a_{i, j},l \in [1, j]\)。
因此,在处理完了每一行的 DP 值后,要转化为前缀最值,便于优化转移。
时间复杂度:\(O(nk)\)。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
void solve()
{
int n, k;
std::cin >> n >> k;
std::vector<std::vector<int>> a(n, std::vector<int>(k));
auto dp = a;
for(auto &i : a) {
for(auto &j : i) {
std::cin >> j;
}
}
for(int j = 0;j < k;j ++) {
dp[0][j] = a[0][j];
if(j > 0)dp[0][j] = std::max(dp[0][j], dp[0][j - 1]);
}
for(int i = 1;i < n;i ++) {
for(int j = 0;j < k;j ++) {
dp[i][j] = dp[i - 1][j] + a[i][j];
}
for(int j = 1;j < k;j ++) {
dp[i][j] = std::max(dp[i][j], dp[i][j - 1]);
}
}
std::cout << dp[n - 1][k - 1] << '\n';
}
1005 - 持家
这个题和 CF2078D 有异曲同工之妙。
首先,根据小学数学知识可以知道,打 \(x\) 折的意思是当前价格乘 \(x / 10\)。
也就是说,打折是和当前价格相关的,而减价是和当前价格无关的,无论当前价格多少,减的是多少就是多少。
而根据乘法的知识我们又能知道,若当前的价格越高,优惠力度会越大,因此对于打折券,一定是价格越高的时候用越好。
那么,如果我们使用了降价券,就一定不会再次使用任何一张打折券,因为此时只需要交换打折券和降价券的使用顺序,先打折后降价,我们就能获得更大的优惠力度。
因此,此题的做法就很明显了,我们枚举打折券的使用数量,剩下的就是降价券的使用数量,对于打折券,越低的折扣越优先使用,对于降价券,越高的降价越优先使用,因此可以对两种券分别排序,然后记录一下前缀乘积和前缀和,然后枚举计算取最优解即可。
时间复杂度:\(O(n)\)。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
void solve()
{
double p;std::cin >> p;
int n, k;std::cin >> n >> k;
std::vector<double> dazhe;
std::vector<i64> jian;
for(int i = 1;i <= n;i ++) {
int op;std::cin >> op;
i64 v;std::cin >> v;
if(op == 0) {
dazhe.push_back(1.0 * v / 10);
} else {
jian.push_back(v);
}
}
sort(dazhe.begin(), dazhe.end());
sort(jian.begin(), jian.end(), std::greater());
for(int i = 1;i < dazhe.size();i ++) {
dazhe[i] *= dazhe[i - 1];
}
for(int i = 1;i < jian.size();i ++) {
jian[i] += jian[i - 1];
}
double ans = p;
for(int i = 0;i <= std::min(k, (int)dazhe.size());i ++) {
int d = i;
int j = k - d;
if(d > dazhe.size() || j > jian.size())continue;
double tmp = p;
if(d <= 0) {
tmp = tmp - jian[j - 1];
} else if(j <= 0) {
tmp = tmp * dazhe[d - 1];
} else {
tmp = tmp * dazhe[d - 1] - jian[j - 1];
}
ans = std::min(ans, tmp);
ans = std::max(ans, 0.00);
}
std::cout << ans << '\n';
}
int main()
{
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
std::cout << std::fixed << std::setprecision(2);
int t = 1;std::cin >> t;
while(t --)solve();
return 0;
}
1001 - 战斗爽
就是这个题,读假了,读成了怪物每多受一次攻击,下次受到的伤害就要继续减半。
这个题纯模拟题,按题意模拟即可。
我们开一个结构体,存储怪物的编号,血量,攻击力,被攻击次数的信息,并且按题意重载小于号运算符,存入一个优先队列 \(pq\)。
再开一个结构体,存储怪物的攻击力,编号信息,并且按攻击力从小到大重载小于运算符,存入一个优先队列 \(sha\)。
再开一个数组,存储怪物的血量。
然后就可以开始模拟了,只要我们还活着,并且怪物还有活着的,就从优先队列 \(pq\) 中取出堆顶的怪物,并对它进行攻击,更新怪物的血量和被攻击次数,如果他还有血量,并且被攻击次数不满 \(k\) 次,就放回优先队列 \(pq\) 中,若没有血量了,就添加到答案中,然后检查优先队列 \(sha\) 的堆顶怪物是否存活,若死亡,则弹出优先队列,直到堆顶怪物存活,并对我们进行攻击,按照此逻辑模拟至我们死掉或是怪物全死掉为止,输出答案。
时间复杂度:\(O(tn\log n)\),非常的极限。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
struct monster {
int id, g, x, cnt;
bool operator < (const monster &v) const {
if(x != v.x)return x > v.x;
else if(g != v.g)return g > v.g;
else if(id != v.id)return id > v.id;
}
};
struct guai {
int id, g;
bool operator < (const guai &v) const {
return g < v.g;
}
};
void solve()
{
int n, u, k, h;std::cin >> n >> u >> k >> h;
std::vector<int> a(n + 1);
std::priority_queue<monster> pq;
std::priority_queue<guai> sha;
for(int i = 1;i <= n;i ++) {
int g, x;std::cin >> g >> x;
a[i] = x;
pq.push({i, g, x, 0});
sha.push({i, g});
}
int ans = 0;
while(h && pq.size()) {
monster now = pq.top();
pq.pop();
if(now.cnt)now.x -= u / 2;
else now.x -= u;
now.cnt ++;
now.x = std::max(0, now.x);
a[now.id] = now.x;
if(now.x && now.cnt < k)pq.push(now);
if(!now.x)ans ++;
while(sha.size() && a[sha.top().id] == 0) {
sha.pop();
}
if(sha.size()) {
h -= sha.top().g;
h = std::max(h, 0);
}
}
std::cout << ans << '\n';
}
1004 - 充实(补题)
这个题从二进制的角度来看,其实就是每次将一个偶数距离右移一位,并在中间插入一个和起点以及终点间隔该偶数一半距离的数字,那么,如果要让这些数字连续,这个间距最后应该变成 \(1\),也就是说要出现一次偶数间距为 \(2\) 的次幂。
根据题解所说,每次操作等价于让较大的数减去较小的数,也就是 \((a, b) \rightarrow (a - b, b)\),因此可以想到 \(gcd\),所以,对所有间距取一个 \(gcd\),如果结果是 \(2\) 的次幂,就一定可以,否则不可以。
(但说实话题解讲的我还是没看懂,有大佬明白的跪求再指点一下 T_T)
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
void solve()
{
int n;std::cin >> n;
std::vector<std::vector<int>> g(n + 1);
for(int i = 2;i <= n;i ++) {
int x;std::cin >> x;
g[x].push_back(i);
}
std::vector<i64> a(n + 1);
for(int i = 1;i <= n;i ++) {
std::cin >> a[i];
}
int ans = 0;
auto dfs = [&](auto &&self, int st, int pre, int gcd) -> void {
if(st != 1)gcd = std::gcd(gcd, abs(a[st] - a[pre]));
if(g[st].size() == 0) {
ans += ((gcd & (gcd - 1)) == 0);
return;
}
for(auto &i : g[st]) {
self(self, i, st, gcd);
}
};
dfs(dfs, 1, 0, 0);
std::cout << ans << '\n';
}
1003 - 洞察(补题)
二进制的题,一定要从二进制的角度来思考。
我们发现,对于一个区间的数,如果他们第 \(i\) 位以上的位都相同,那么对于这个区间的数的第 \(i\) 位,必然是前面一半 \(0\),后面一半 \(1\),其实也就是 01trie 树那样子,那么也就是说,\(0,1\) 的情况具有单调性,因此是可以二分的。
那么,我们就可以像 01trie 树的思路来做(并不是真的要建一棵 01trie 树)。
首先将目标区间设置为范围内的所有数,然后从高位到低位考虑:
- 如果 \(v\) 这一位为 \(1\),继续考虑 \(c\) :如果 \(c\) 这一位为 \(p\),那么 \(kx + b\) 这一位为 \(p\) 的区间可以直接加进答案,\(kx + b\) 为 \(p \oplus 1\) 的区间需要继续往后面的位讨论。
- 如果 \(v\) 这一位尾 \(0\),继续考虑 \(c\) :如果 \(c\) 这一位为 \(p\),那么当且仅当 \(kx + b\) 这一位 为 \(p\) 的时候需要继续往后面的位讨论,\(kx + b\) 为 \(p \oplus 1\) 的区间一定大于 \(v\)。
按照上述逻辑从高位到低位逐步缩小区间并加上符合的答案即可,最后所有位贪心完了如果区间还有剩余也要记得加上来。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 2e5 + 9;
void solve()
{
i64 k, b, c, v;std::cin >> k >> b >> c >> v;
i64 l = 0, r = ((1ll << 62) - 1 - b) / k;
auto bs = [&](i64 s, i64 e, int bit) -> i64 {
while(s + 1 != e) {
i64 mid = (s + e) >> 1;
if((k * mid + b) >> bit & 1) e = mid;
else s = mid;
}
return s;
};
i64 ans = 0;
for(int i = 61;i >= 0;i --) {
if(l > r)break;
i64 m = bs(l - 1, r + 1, i);
int nowc = (c >> i & 1);
int nowv = (v >> i & 1);
if(nowv == 1) {
if(nowc == 1) {
ans += r - m;
r = m;
} else {
ans += m - l + 1;
l = m + 1;
}
} else {
if(nowc == 1) {
l = m + 1;
} else {
r = m;
}
}
}
if(l <= r)ans += r - l + 1;
std::cout << ans << '\n';
}
1010 - 图之图(补题)
首先根据题意这个图一定是一个有向无环图,因此可以考虑拓扑排序 DP。
但是,这个题的建图方式导致这个题建图的复杂度就会特别高,因此实际建一个图是不可行的。
那怎么办呢?
我们注意到,连边是颜色和颜色之间连边,而点和点之间连边是固定从小到大的,那么,我们可以直接从小到大枚举,并将答案的贡献加到颜色上,这样可以保证当前所有颜色的贡献来源于比自己小的点,汇总当前的答案也只需要汇总到颜色上,便于后面的传递。
但是颜色的数量级也是 \(10^5\) 的,如果暴力转移,显然是会 TLE 的。
这时可以考虑进行根号分治。
根号分治,首先我们要设置一个阈值 \(k\):
- 对于度数 \(\leq k\) 的颜色,我们枚举它的出边,把所有出边的颜色的路径值加到当前颜色上即可,此操作的时间复杂度为 \(O(k)\)。
- 对于度数 \(> k\) 的颜色,我们不在找到它的时候来加路径值,因为它的出边过多,而是反过来,在每次计算出了一个颜色新增的路径数后,同时把新增的添加到这个颜色相邻的度数 \(> k\) 的颜色上,此操作的时间复杂度为 \(O(m / k)\)。
那么总的时间复杂度就是 \(O(k + m / k)\),为了平衡两个操作的时间复杂度,根据基本不等式的知识可以知道 \(k + m / k \geq 2\sqrt{m}\),当且仅当 \(k = \sqrt{m}\) 时取等号,因此总的时间复杂度为 \(O(n\sqrt{m})\)。
点击查看代码(省略了取模类)
void solve()
{
int n, c;std::cin >> n >> c;
std::vector<int> a(n + 1);
for(int i = 1;i <= n;i ++) {
std::cin >> a[i];
}
int m;std::cin >> m;
std::vector<std::vector<int>> g(c + 1), h(c + 1);
for(int i = 1;i <= m;i ++) {
int u, v;std::cin >> u >> v;
g[u].push_back(v);
if(u != v)g[v].push_back(u);
}
int k = sqrtl(m);
std::vector<bool> vis(c + 1);
for(int i = 1;i <= c;i ++) {
if(g[i].size() >= k) {
vis[i] = true;
for(auto &j : g[i]) {
h[j].push_back(i);
}
}
}
std::vector<Z> dat(c + 1), sum(c + 1);
for(int i = 1;i <= n;i ++) {
int now = a[i];
Z cur = (i == 1);
if(vis[now]) {
cur += dat[now];
} else {
for(auto &j : g[now]) {
cur += sum[j];
}
}
if(i == n) {
std::cout << cur << '\n';
break;
}
sum[now] += cur;
for(auto &j : h[now]) {
dat[j] += cur;
}
}
}
1007 - 童年(补题)
典型博弈模型。
博弈论,遇事不决,从后往前推,我们记 \(xa, xb\) 为先手的两个数字,\(ya, yb\) 为后手的两个数字,记 \(dp_{xa,xb,ya,yb}\) 为此时先手必胜还是必败还是平局。
博弈论,可以抽象为一个状态图,并有以下规则:
- 若一个状态连向的所有状态都是先手必胜态,则这个状态为先手必败态。
- 若一个状态有任何一个状态连向了先手必败态,则这个状态为先手必胜态。
- 剩余的情况,则为平局态,也就是说,平局态会相互连接并且成环。
那么,我们就可以使用这个规则,建一个反图,从游戏结束时的状态往回推进行 DP:
- 若一个状态是必胜态,则这个状态连向的所有状态计数 \(+1\),当计数等于连向的这个状态的入度时,这个状态就是必败态。
- 若一个状态是必败态,则这个状态连向的所有状态都是必胜态。
预处理完了过后,就可以直接查询输入的情况的结果了。
点击查看代码
#include <bits/stdc++.h>
#define inf32 1e9
#define inf64 2e18
#define ls o << 1
#define rs o << 1 | 1
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned int;
const int N = 1e5 + 9;
struct Node {
int xa, ya, xb, yb;
};
int id[10][10][10][10];
Node a[N];
std::vector<int> g[N], h[N];
int cnt[N], ans[N];
std::queue<int> q;
void add(int now, int xa, int ya, int xb, int yb) {
if(xa > ya)std::swap(xa, ya);
int nxt = id[xb][yb][xa][ya];
g[now].push_back(nxt);
h[nxt].push_back(now);
}
int main()
{
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int tot = 0;
for(int xa = 0;xa <= 9;xa ++) {
for(int ya = xa;ya <= 9;ya ++) {
for(int xb = 0;xb <= 9;xb ++) {
for(int yb = xb;yb <= 9;yb ++) {
a[++ tot] = (Node){xa, ya, xb, yb};
id[xa][ya][xb][yb] = tot;
if(xa == 0 && ya == 0)ans[tot] = 1, q.push(tot);
else if(xb == 0 && yb == 0)ans[tot] = 2, q.push(tot);
}
}
}
}
for(int xa = 0;xa <= 9;xa ++) {
for(int ya = std::max(xa, 1);ya <= 9;ya ++) {
for(int xb = 0;xb <= 9;xb ++) {
for(int yb = std::max(xb, 1);yb <= 9;yb ++) {
int now = id[xa][ya][xb][yb];
if(xa) {
if(xb)add(now, (xa + xb) % 10, ya, xb, yb);
add(now, (xa + yb) % 10, ya, xb, yb);
}
if(xb)add(now, xa, (ya + xb) % 10, xb, yb);
add(now, xa, (ya + yb) % 10, xb, yb);
}
}
}
}
while(q.size()) {
int now = q.front();
q.pop();
if(ans[now] == 1) {
for(auto &i : h[now]) {
if(!ans[i]) {
cnt[i] ++;
if(cnt[i] == g[i].size())ans[i] = 2, q.push(i);
}
}
} else {
for(auto &i : h[now]) {
if(!ans[i]) {
ans[i] = 1;
q.push(i);
}
}
}
}
int t;std::cin >> t;
while(t --) {
int xa, ya, xb, yb;std::cin >> xa >> ya >> xb >> yb;
if(xa > ya)std::swap(xa, ya);
if(xb > yb)std::swap(xb, yb);
std::cout << ans[id[xa][ya][xb][yb]] << '\n';
}
return 0;
}