逻辑代数01律的理解_泛代数学习笔记1:定义和一些例子

本文介绍了代数结构的概念,包括群、半群、幺半群、环、模、代数、半格、格、有界格、布尔代数、海廷代数、n-值波斯特代数和圆柱代数,阐述了这些结构的基本定义、性质和实例,旨在深入理解逻辑代数中的01律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ab584a79d7e04a5b764364834c81c9f7.png

类型论驿站写作计划

群、环、格、布尔代数等代数结构在很早就已经得到了比较深入的研究。怀特海(Whitehead)在1898年指出,有必要定义一种可以囊括现有的大部分代数结构的代数。但这一任务直到1933年才由伯克霍夫(Birkhoff)完成。

定义1

对于一个非空集合

,以及一个非负整数
,我们定义
,且对于
的元素所构成的
元组。
上的
元运算(或函数)是任何从
的函数
元数(arity,rank)。有限元操作是针对某个
来说的的一个
元操作。
的在一个
元运算
下的
像(image)记为
。在
上的运算
如果元数为零,则被称为
零元(nullary)操作,或常运算(constant),该运算完全由
中的唯一元素
中的像
来决定,故而我们通常可以将该运算和元素
视为等同。故而零元运算可以被视为
中的一个元素(例如不同代数结构中的“
单位元”,identity)。

定义2

代数的语言(或类型,type)是一个函数符号的集合

,使得
中的每个元素
都可以得到一个非负整数
的赋值。该整数被称为
的元数,
被称为一个
元函数符号。
元函数符号所构成的子集记为

定义3

如果

是一个代数语言,那么类型为
代数
是一个有序组
,其中
是一个非空集合,
是一组
上的以语言
为指数的(indexed by)有限元运算,使
中的每一个
元函数符号
上都有一个对应的
元运算
。集合
被称为
全域(universe)(支撑集合/底层集合/支集, underlying set),
被称为
基本运算(fundamental operations)。(人们经常用
来指代
)。如果
是有限的,例如
,我们可以把
写成
。代数
一元的,当且仅当它的所有运算都是一元的,代数
单一一元(mono-unary)的,如果它仅有一个一元运算。
是一个
广群(groupoid),如果它只有一个二元运算(通常用
来表示,
在该二元运算下的的像通常记为
,
)。代数
是有限的,如果
是有限的;代数
是平凡的,如果
.

一般情况下,代数基本运算的元数不会超过2,即便是在抽象代数中!下面是一些代数的例子:

1. 群

群是一个满足下列恒等式(identity)的代数

e8f7e162b44401e5a364df71e53a2065.png
Évariste Galois,法国数学家 1811-1832

如果

成立,则该群为
阿贝尔群(交换群)

6847b7c5f7a5bd2753cec11c5e9b5127.png
Niels Henrik Abel, 挪威数学家 1802-1829

2. 半群、幺半群

半群(semigroup)和幺半群(monoid)是对群的定义进行一般化的一个方向。另一个一般化的方向则可以得到拟群/伪群和环圈这两个概念。

半群是一个满足

的广群
。一个半群是阿贝尔半群,如果它满足
。幺半群是一个满足
的代数

3. 拟群/伪群、环圈

拟群(quasigroup)是一个有着三个二元运算的代数

,且满足

环圈(loop)是一个拟群加上一个单位运算/单位元(identity)

:满足
.

4. 环

环(ring)是一个代数<

,并满足下列条件:

是一个阿贝尔群

是一个半群

“有单位运算/单位元的环”(ring with identity)是满足

以及
的代数

5. (固定的)环上的模

为一个环,那么(左)
-模是一个满足下列条件的代数(其中
均为一元运算)

是一个阿贝尔群

为一个有单位元的环,那么酉
-模(unitary R-module)是一个满足
-
,以及

的一个代数。

6. 环上的代数

为一个有单位元的环,
上的代数(algebra over R)是一个满足下列条件的代数

是一个酉
-模

是一个环

7. 半格

半格是满足交换律

以及幂等律
的一个半群

8. 格

参见:Arjuna:格论学习笔记1:基础概念

偏序集,或云 poset,是一个有着二元关系

的集合
,对于
,满足下列条件:
  1. 自反性(reflexive,反射関係)
  2. 反对称性(anti-symmetric,反対称関係)
  3. 传递性(transitive,推移関係)

倘若该集合还满足 “

”(
完全性,totality,完全律),那么这个偏序集被称为线性顺序集合(linear order,線型順序集合)链(chain,鎖)

如果一个偏序集

的任意两个元素的集合
都有一个最小上界
和一个最大下界
,那么它是一个

f65fc49b546b143a4f22a73038be8e7a.png
伊斯兰装饰艺术中存在着大量的格,其中的Penrose排砖法促进了量子力学的研究

9. 有界格

一个有着两个二元和两个零元运算的代数

被称为有界格,如果它满足:

是一个格

10. 布尔代数

如果满足下列条件,代数

是一个布尔代数:

是一个有界格

是一个分配格

布尔代数可以为经典逻辑提供语义诠释。

b2b0544488d35e699f83b1b9504fe36d.png
George Boole, 英国数学家 1815-1864

11. 海廷代数

如果满足下列条件,代数

是一个海廷代数:

是一个有界格

是一个分配格

海廷代数可以为直觉主义逻辑提供语义诠释。

52cd2b13b3f1d103efe2968298b7adae.png
Arend Heyting,荷兰数学家、逻辑学家 1898 - 1980

12. n-值波斯特代数

代数

被称为n-值波斯特代数(n-valued Post algebra),如果它满足由代数
所满足的每一个恒等式,其中
是一个有界链(bounded chain),使得
.

n-值波斯特代数可以为多值逻辑提供语义诠释。

cf1c90d0e6b425f02c8d93d848dee0f6.png
Emil Leon Post 美国数学家、逻辑学家 1954)

13. n-维圆柱代数

给定

,有两个二元运算,
个一元运算和
个零元运算的代数
被称为 n-维圆柱代数(cylindric algebra of dimension n)如果它满足下列条件,其中

是一个布尔代数

如果

Tarski和Thonmpson引入圆柱代数,用以为谓词逻辑(predicate logic)提供代数描写。

0ba3c608b06bebeef9ab72ffe591a630.png
Alfred Tarski 波兰裔美籍数学家、逻辑学家 1901-1983

14. 正交格、正交模格

代数

被称为正交格(ortholattice),如果它满足:

是一个有界格

如果一个正交格满足

我们就称之为正交模格(orthomodular lattice)。

正交格和正交模格在量子逻辑中有着重要的应用。

8b8b1894242f54719c83553c08885cc7.png

类型论驿站写作计划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值