DeepSeek在M芯片Mac上本地化部署

在 Mac 上使用 Ollama 运行 DeepSeek-R1,并通过 Open-WebUI 提供 Web 端访问。

1. 安装 Ollama

Ollama官方:https://ollama.com/
Ollama 是一个轻量级的 AI 推理框架,支持本地运行 LLM(大型语言模型)。首先,下载并安装 Ollama。

mac原生工具brew安装ollama

$ brew install --cask ollama
Running `brew update --auto-update`...
==> Auto-updated Homebrew!
Updated 2 taps (homebrew/core and homebrew/cask).
==> New Formulae
bpmnlint          gersemi           i686-elf-grub     kirimase          org-formation     rattler-index     semver            todoist           x86_64-elf-grub
cf-terraforming   globstar          immich-go         largetifftools    ov                rhai              sequoia-sqv       trdsql            yoke
cloudfoundry-cli  gotz              kafkactl          lazyjournal       pivy              rpds-py           sttr              typioca           ytt
fortitude         hishtory          kapp              mox               punktf            sdl3_ttf          tml               unciv
==> New Casks
candy-crisis                              font-winky-sans                           opera-air                                 trae-cn
consul                                    fuse-t                                    pairpods                                  ua-midi-control
focu                                      macskk                                    pareto-security                           veracrypt-fuse-t
font-sf-mono-nerd-font-ligaturized        nvidia-nsight-compute                     trae

You have 13 outdated formulae and 1 outdated cask installed.

==> Downloading https://github.com/ollama/ollama/releases/download/v0.5.13/Ollama-darwin.zip
==> Downloading from https://objects.githubusercontent.com/github-production-release-asset-2e65be/658928958/2dc24c17-0bc0-487a-92d1-0265efd65a14?X-Amz-Algorithm=AWS4-
############################################################################################################################################################### 100.0%
==> Installing Cask ollama
==> Moving App 'Ollama.app' to '/Applications/Ollama.app'
==> Linking Binary 'ollama' to '/opt/homebrew/bin/ollama'
🍺  ollama was successfully installed!

检查Ollama是否安装成功,成功会显示版本号,如:ollama version is 0.5.13

$ ollama --version
Warning: could not connect to a running Ollama instance
Warning: client version is 0.5.13

2. 下载模型

下载 DeepSeek-R1 模型
模型下载地址:https://ollama.ai/library/deepseek-r1

该命令会自动下载 DeepSeek-R1 1.5B 版本的模型,并存储在本地。

$  ollama pull deepseek-r1:7b
pulling manifest
pulling 96c415656d37... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB
pulling 369ca498f347... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████▏  387 B
pulling 6e4c38e1172f... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████▏ 1.1 KB
pulling f4d24e9138dd... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████▏  148 B
pulling 40fb844194b2... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████▏  487 B
verifying sha256 digest
writing manifest
success

3.本地运行 DeepSeek-R1

执行后,终端会进入交互模式,可以直接输入文本与模型进行对话。

# 查看已下载的模型
$ ollama list
NAME              ID              SIZE      MODIFIED
deepseek-r1:7b    0a8c26691023    4.7 GB    24 seconds ago
# 运行模型
$ ollama run deepseek-r1:7b
>>> Send a message (/? for help)

4.通过 Open-WebUI 运行

使用 Web 界面交互模型,可以安装 Open-WebUI。该工具提供了一个用户友好的 Web 前端,使得 DeepSeek-R1 更加易用。

克隆 Open-WebUI 仓库

$ git clone https://github.com/open-webui/open-webui.git
Cloning into 'open-webui'...
remote: Enumerating objects: 91391, done.
remote: Counting objects: 100% (131/131), done.
remote: Compressing objects: 100% (74/74), done.
remote: Total 91391 (delta 70), reused 57 (delta 57), pack-reused 91260 (from 2)
Receiving objects: 100% (91391/91391), 177.81 MiB | 3.98 MiB/s, done.
Resolving deltas: 100% (60008/60008), done.
Updating files: 100% (4575/4575), done.

启动 Open-WebUI 容器

mac安装docker,安装完成后应用程序中会有docker程序,点击即可启动

brew install --cask --appdir=/Applications docker

启动docker

docker run -d \
  -p 3000:8080 \
  --add-host=host.docker.internal:host-gateway \
  -v open-webui:/app/backend/data \
  --name open-webui \
  --restart always \
  ghcr.io/open-webui/open-webui:main
Unable to find image 'ghcr.io/open-webui/open-webui:main' locally
main: Pulling from open-webui/open-webui
d51c377d94da: Pull complete
987cac002684: Pull complete
076b75118273: Pull complete
157e623d2984: Pull complete
40d5353a5918: Pull complete
4f4fb700ef54: Pull complete
aebeb0b4e5d0: Pull complete
03f562834d64: Pull complete
dc0f62a912f5: Pull complete
93fdf9ebd111: Pull complete
596be9ce6130: Pull complete
07dc67f42781: Pull complete
7c2ef53b15e7: Pull complete
e5511c24fa69: Pull complete
69de4f91fd38: Pull complete
Digest: sha256:74fc3c741a5f3959c116dd5abc61e4b27d36d97dff83a247dbb4209ffde56372
Status: Downloaded newer image for ghcr.io/open-webui/open-webui:main
26b786db658d187c2b82256fcbf33102c8c10c25b1087393483272e53708908b

• -p 3000:8080:将容器的 8080 端口映射到本机 3000 端口;
• --add-host=host.docker.internal:host-gateway:允许容器访问宿主机网络;
• -v open-webui:/app/backend/data:挂载数据存储目录,保存容器的状态和数据。
• --restart always:确保容器在重启后自动运行;
• ghcr.io/open-webui/open-webui:main:拉取 Open-WebUI 的最新版本镜像。

运行容器后,访问 http://localhost:3000 即可访问 Open-WebUI。

#停止容器
docker stop open-webui
#删除容器
docker rm open-webui
#删除存储数据
docker volume rm open-webui
原创作者: wiseo 转载于: https://www.cnblogs.com/wiseo/p/18757504/DeepSeek-R1
<think>好的,我现在需要帮助用户在MacBook上本地私有化部署DeepSeek模型,并且需要一个带有可视化界面的解决方案。首先,我得理解用户的需求。用户提到了DeepSeek模型,可能是指深度求索公司开发的某个模型,比如DeepSeek-R1。用户希望在本地Mac部署,并且希望有图形界面,这样操作起来更方便,不需要完全依赖命令行。 接下来,我需要考虑MacBook的硬件配置是否支持这种部署。通常,MacBook的M系列芯片有不错的性能,尤其是GPU部分可能通过Metal框架加速。但大型模型如8B参数的模型可能需要较大的内存和显存。需要确认用户的Mac配置,尤其是内存大小。比如,如果用户是M1/M2芯片,16GB内存可能勉强运行,但32GB会更稳妥。 然后,关于私有化部署,用户希望数据不离开本地,确保隐私。这涉及到如何安全地下载和存储模型文件,以及确保所有操作都在本地进行。可能需要使用GGUF格式的模型,因为llama.cpp支持这种格式,并且适合在Apple芯片上运行。 可视化界面方面,用户不想用命令行,所以需要寻找支持GUI的工具。Ollama是一个可能的选择,它支持本地运行模型并提供Web界面。另外,LM Studio也是一个选项,它专为Mac设计,有图形界面,方便模型加载和交互。还有GPT4All,虽然主要面向Windows/Linux,但可能也有Mac版本或者可以通过其他方式安装。 步骤方面,首先需要下载模型文件,比如DeepSeek-R1的GGUF版本,从HuggingFace或其他可信来源获取。然后安装llama.cpp或者Ollama这样的工具。Ollama可能需要编写Modelfile来配置自定义模型。LM Studio则可能更直接,用户只需通过界面下载或导入模型即可。 还要考虑性能优化,比如使用Metal加速,设置合适的线程数,调整GPU层数等。例如,在llama.cpp中,使用--n-gpu-layers参数来启用GPU加速。同时,量化模型到Q4或Q5可能减少内存占用,提升运行速度。 另外,用户可能需要指导如何具体操作,比如安装Homebrew来安装依赖,或者通过Ollama的文档来添加自定义模型。对于GUI工具,需要提供下载链接和基本的使用步骤,比如在LM Studio中搜索并加载模型。 最后,需要提醒用户注意模型文件的版权和许可,确保合规使用。同时,性能方面的预期管理,比如响应速度和可能的延迟,尤其是在资源受限的MacBook上。 总结下来,解决方案可能包括以下几个步骤:选择适合的GUI工具(如Ollama或LM Studio),下载模型文件,配置工具以加载模型,进行性能优化,最后测试运行。需要分步骤详细说明,并确保用户能够按照指引操作。</think>以下是MacBook本地私有化部署DeepSeek模型的可视化方案实现步骤: ### 一、环境准备 1. 模型格式选择 推荐使用GGUF格式模型,该格式专为llama.cpp框架优化,支持Apple Silicon芯片的Metal GPU加速。例如: $$ \text{DeepSeek-R1-Distill-Llama-8B-Q4\_K\_M.gguf} $$ 2. 硬件要求 - M1/M2/M3芯片MacBook(建议16GB内存及以上) - 至少10GB存储空间 ### 二、可视化部署方案 #### 方案1:Ollama + WebUI 1. 安装Ollama ```bash # 通过Homebrew安装 brew install ollama # 启动服务 ollama serve ``` 2. 自定义模型配置 创建Modelfile: ```dockerfile FROM ~/Downloads/DeepSeek-R1-Distill-Llama-8B-Q4_K_M.gguf PARAMETER num_gpu 20 # 启用Metal加速 ``` 3. 加载模型 ```bash ollama create deepseek -f Modelfile ollama run deepseek ``` 4. 访问Web界面 浏览器打开`http://localhost:11434` #### 方案2:LM Studio(推荐) 1. 下载安装 官网下载:[https://lmstudio.ai/](https://lmstudio.ai/) 2. 模型导入 - 在搜索栏输入"DeepSeek" - 选择TheBloke/DeepSeek-R1-Distill-Llama-8B-GGUF仓库 - 下载Q4_K_M量化版本 3. 运行配置 ```json { "n_gpu_layers": 20, "threads": 8, "batch_size": 512 } ``` [^2] ### 三、性能优化技巧 1. Metal加速配置 在高级设置中启用: ```python # llama.cpp参数示例 ./main -m model.gguf -n 128 --n-gpu-layers 20 -p "你的提示" ``` 2. 内存管理 使用量化模型可降低内存占用: $$ \text{内存消耗} \propto \frac{\text{参数量} \times \text{量化位数}}{8} $$ | 量化等级 | 显存占用 | 推荐场景 | |---------|---------|---------| | Q4_K | 6GB | M1/M2 16GB | | Q5_K | 7GB | M1 Pro 32GB | ### 四、验证部署 执行测试对话: ``` <|User|>请解释相对论 <|Assistant|>爱因斯坦的狭义相对论基于两个基本假设... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值