CTR (Click-Through Rate) 模型是一种机器学习模型,它用于预测用户是否会点击某个广告或链接。CTR 模型通常用于在线广告、搜索引擎和社交媒体中优化推荐算法。CTR 模型是一种二元分类模型,它预测用户是否会点击某个广告或链接,输出值为 0 或 1。
CTR 模型通常使用特征来描述用户和广告,然后使用这些特征来预测用户是否会点击广告。这些特征可以是用户的年龄、性别、地理位置、浏览历史等信息,也可以是广告的类型、标题、描述、图片等信息。
CTR 模型常见的构建方法有:逻辑回归、决策树、随机森林、支持向量机、神经网络等。选择合适的模型和特征非常重要,因为这会直接影响模型的预测