AutoACT(Automatic Agent Learning from Scratch via Self-Planning)是一种自动代理学习框架,旨在解决现有语言代理系统对大规模标注数据和封闭源模型依赖的问题。其核心原理主要包括以下几个方面:
1. 自动合成规划轨迹
AutoACT框架首先通过自我规划(self-planning)自动合成规划轨迹。这意味着它可以在有限的数据和工具库基础上,无需人类或强大闭源模型的帮助,自动生成规划轨迹01346。这种自动合成规划轨迹的能力使得AutoACT能够在不依赖大规模标注数据的情况下进行学习。
2. 分工策略
AutoACT利用分工策略(division-of-labor)来区分不同的子任务。根据目标任务信息和自动合成的规划轨迹,AutoACT自动将任务分解成多个子任务,并生成具有不同功能的子代理来执行这些子任务01346。这种分工策略使得AutoACT能够有效地处理复杂任务,避免单一模型处理多重功能的压力。
3. 自动学习
AutoACT通过上述两个步骤,实现了从学习到规划的全过程自动化。它不需要依赖人工标注或闭源模型的辅助,即可自动生成子代理并完成特定任务01346。这种自动学习的能力使得AutoACT在处理复杂任务时具有较高的灵活性和适应性。
4. 实验验证
通过实验验证,AutoACT在多个任务上的性能表现要