AutoACT自动代理学习框架原理和源码解析

AutoACT(Automatic Agent Learning from Scratch via Self-Planning)是一种自动代理学习框架,旨在解决现有语言代理系统对大规模标注数据和封闭源模型依赖的问题。其核心原理主要包括以下几个方面:

1. 自动合成规划轨迹

AutoACT框架首先通过自我规划(self-planning)自动合成规划轨迹。这意味着它可以在有限的数据和工具库基础上,无需人类或强大闭源模型的帮助,自动生成规划轨迹01346。这种自动合成规划轨迹的能力使得AutoACT能够在不依赖大规模标注数据的情况下进行学习。

2. 分工策略

AutoACT利用分工策略(division-of-labor)来区分不同的子任务。根据目标任务信息和自动合成的规划轨迹,AutoACT自动将任务分解成多个子任务,并生成具有不同功能的子代理来执行这些子任务01346。这种分工策略使得AutoACT能够有效地处理复杂任务,避免单一模型处理多重功能的压力。

3. 自动学习

AutoACT通过上述两个步骤,实现了从学习到规划的全过程自动化。它不需要依赖人工标注或闭源模型的辅助,即可自动生成子代理并完成特定任务01346。这种自动学习的能力使得AutoACT在处理复杂任务时具有较高的灵活性和适应性。

4. 实验验证

通过实验验证,AutoACT在多个任务上的性能表现要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值