步子哥
对于稍微复杂一些的问题,LLM不可能一步解决,需要一步步来。
简单来说就是 步子不能大,一步步推理,也就是 步子哥 这个昵称的由来。
AGI专家,20年的软件系统研发和管理经验。
欢迎来我的爱发电主页:https://afdian.com/a/steper
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
BMAD-METHOD:AI驱动的敏捷开发框架深度研究
BMAD-METHOD,全称为“Breakthrough Method for Agile AI-Driven Development”,即“突破性敏捷AI驱动开发方法”,是一个旨在通过人工智能(AI)代理模拟完整敏捷开发团队的开源框架。该方法的核心理念在于将AI从传统的“编程助手”角色提升为能够执行复杂开发任务的“AI开发团队”。在传统的软件开发过程中,尤其是敏捷开发模式,通常需要产品经理、架构师、开发工程师、测试工程师等多种角色协同工作。原创 2025-08-01 00:35:52 · 818 阅读 · 0 评论 -
基于LLM AI Agent的通用Text-to-SQL系统:技术挑战、架构设计与领域优化深度研究报告
本报告系统性地探讨了构建基于LLM AI Agent的通用Text-to-SQL系统所面临的核心挑战、关键技术与架构设计。研究表明,该领域的成功并非单一技术的突破,而是多项技术协同优化的结果。核心挑战主要集中在自然语言的歧义性、SQL生成的语法与语义准确性,以及数据库知识的深度整合三个方面。为应对这些挑战,报告提出了一套完整的技术体系架构层面:采用基于LangChain等框架的Agentic架构,结合向量数据库、联邦查询引擎和内存数据库,构建高性能、可扩展的系统。准确性提升。原创 2025-08-03 07:53:49 · 4 阅读 · 0 评论 -
AI的“和光同尘”与“守中”之道:从数据反馈到价值对齐的哲学思辨
伦理学为AI价值对齐提供了具体的规范框架。它帮助我们回答“应该对齐何种价值观”这一核心问题。这不仅仅是技术问题,更是一个规范性问题。伦理学研究致力于开发能够指导AI系统行为的道德框架,确保其决策和行动符合人类的规范和价值观。例如,阿西莫夫的机器人三法则、FATE原则(公平性、问责制、透明性、伦理性)以及中国提出的“以人为本”的AI伦理原则,都试图为AI的行为划定边界。然而,这些原则在具体应用中常常面临困境。例如,当不同原则发生冲突时(如保护隐私与促进公共安全),如何权衡?这需要更精细的伦理推理和情境判断。原创 2025-08-03 07:49:22 · 3 阅读 · 0 评论 -
自底向上的领域特定超级智能:可靠知识图谱构建与应用研究
系统分析了自底向上知识图谱构建的理论框架:从知识表示理论、机器学习理论、数据挖掘理论和认知科学理论等多个角度,系统分析了自底向上知识图谱构建的理论基础,为领域特定超级智能的研究提供了理论指导(20)。提出了可靠知识图谱的评估标准和构建策略:基于对知识图谱可靠性的深入分析,提出了覆盖率、准确性、一致性、可扩展性、可维护性和可解释性等评估标准,并提出了相应的构建策略和技术路径(28)。总结了自底向上知识图谱构建的技术实现路径。原创 2025-07-31 00:00:00 · 608 阅读 · 0 评论 -
GEPA MCP Server: 基于遗传-进化架构的自动提示优化工具深度研究
GEPA MCP Server 是一个专为 Claude Desktop 设计的尖端工具,其核心定位是作为一个自动化的提示优化服务器。该项目通过实现一种名为 GEPA(Genetic-Evolutionary Prompt Architecture,遗传-进化提示架构)的先进算法,旨在解决传统提示工程(Prompt Engineering)中耗时耗力、依赖人工经验的痛点。原创 2025-08-01 23:52:41 · 29 阅读 · 0 评论 -
Gemini-CLI 架构分析:自注意力簇动力学视角
我们将系统的关键概念视为在高维空间中交互的“粒子”,它们的初始位置和关系定义了整个系统的基础形态。核心引擎 (@gemini-cli/core):位于系统的中心。它不关心UI,只负责接收请求、调用大模型、执行工具和返回结果。这是所有智能和功能的来源。命令行界面 (@gemini-cli/cli):包裹在核心之外,是用户与系统交互的直接媒介。它的关键技术选择是,这表明项目追求的不仅仅是功能,还有丰富的、现代化的交互体验。工具集 (Tools):作为核心引擎的延伸,是连接模型与本地环境的“手臂”。原创 2025-06-28 08:48:48 · 1115 阅读 · 0 评论 -
Fish Speech: 开源语音合成新秀
Fish Speech是一个开源的语音合成项目,由Fish Audio团队开发。该项目旨在提供高质量、易用的语音合成解决方案,支持多语言文本到语音的转换。高质量语音输出支持多语言提供微调和推理功能开源代码,允许自由修改和使用提供Web UI界面,方便操作Fish Speech作为一个新兴的开源语音合成项目,展现了强大的潜力和广阔的应用前景。它不仅提供了高质量的语音输出,还支持多语言处理和模型微调,为研究人员和开发者提供了一个理想的语音合成平台。原创 2024-07-10 22:43:12 · 647 阅读 · 0 评论 -
AI辅助决策中人类行为预测的统一框架
我们首先正式描述本研究中的AI辅助决策场景。假设一个决策任务可以用n维特征向量x∈Rnx∈Rn来表征,y是该任务的正确决策。本研究聚焦于二元选择的决策任务,即y∈01y∈01,且任务x的每个特征xix_ixi都被归一化到 [0,1] 区间内。我们用Mx;wmM(x;w_m)Mx;wm表示AI模型对决策任务的输出(wmw_mwm是模型参数),其取值范围在 [0,1] 之间。基于Mx;wmM(x;w_m)Mx;w。原创 2024-07-16 07:05:18 · 1457 阅读 · 0 评论 -
DOCBENCH: 评估基于大语言模型的文档阅读系统的基准测试
为了填补这一空白,本文介绍了DOCBENCH,这是一个专门设计用于评估基于LLM的文档阅读系统的新基准。DOCBENCH的开发旨在反映现实世界的场景,其中每个输入都由一个文档与一个或多个相关问题配对,每个问题都标注了标准答案。我们的基准经过精心的开发过程,结合了人工注释和合成问题生成。229个真实世界的文档1,102个问题跨越5个不同领域:学术、金融、政府、法律和新闻涉及4个问题类别:仅文本多模态(即表格和图形)元数据无法回答的问题这确保了对各种文档阅读能力的全面覆盖。原创 2024-07-17 23:58:13 · 714 阅读 · 0 评论 -
AI接口管理的新纪元:One API全方位解析
One API提供了丰富的自定义选项,让用户可以根据自身需求定制系统。用户可以自定义系统名称、logo、页脚,甚至可以使用HTML和Markdown代码自定义首页和关于页面。这些功能使得One API可以无缝集成到各种应用场景中,提供一致的用户体验。这种高度的可定制性使得One API不仅仅是一个技术工具,更是品牌展示和用户体验的重要组成部分。One API作为一个强大而灵活的OpenAI接口管理与分发系统,正在为AI开发领域带来革命性的变化。原创 2024-08-08 23:29:51 · 677 阅读 · 0 评论 -
解密 LLM 的“符号机制”架构——从原子提示到神经场的设计之道
在大型语言模型(LLM)领域,符号主义与神经网络的争论由来已久。2025 年 Yang 等人最新研究表明,LLM 内部竟然自发地形成了“符号处理”机制,支持抽象推理。本文将从架构和设计思想的角度,带你深入了解这一“符号机制三阶段架构”,并探讨如何在上下文工程中加以利用。原创 2025-07-29 00:00:00 · 767 阅读 · 0 评论 -
连接的奇幻世界:Memgraph如何编织数据之网,点亮AI之光
想象一下,你正站在一个巨大的蜘蛛网中央,每一根丝线都连接着无数闪烁的节点。这些节点不是简单的珠子,而是活生生的数据点:从NASA的太空人才档案,到医院的医疗知识图谱,再到金融诈骗的实时追踪。这张网不是静止的,它在呼吸、在流动,像一条永不停息的河流,随时准备捕捉下一个洞察。这,就是Memgraph的世界——一个图数据库的奇幻王国,在这里,关系不仅仅是“边”,而是构建真实关系的桥梁。原创 2025-07-29 00:00:00 · 568 阅读 · 0 评论 -
自下而上的领域特定超级智能:可靠知识图谱的核心作用深度研究
自下而上的领域特定超级智能”(Bottom-up Domain-specific Superintelligence)是一种旨在通过特定方法构建在特定领域内表现出超越人类专家水平智能的系统概念。其核心思想在于,与追求通用人工智能(AGI)不同,该路径专注于在特定垂直领域内实现深度专业知识和高级推理能力。这一概念强调通过“自下而上”的学习方式,即从基础的、细粒度的领域概念(“领域原语”)出发,逐步构建复杂的知识结构和推理能力,而非依赖通用的、预先训练好的大规模语言模型进行“自上而下”的知识迁移。原创 2025-07-30 06:00:00 · 848 阅读 · 0 评论 -
BMAD-METHOD 项目深度分析报告
BMAD-METHOD(Breakthrough Method for Agile Ai Driven Development)是一个旨在通过人工智能(AI)代理模拟完整敏捷开发团队的开源框架。该项目的核心理念是将AI从传统的“编程助手”角色提升为能够执行复杂开发任务的“AI开发团队”。在传统的软件开发过程中,尤其是敏捷开发模式,通常需要产品经理、架构师、开发工程师、测试工程师等多种角色协同工作。然而,对于个人开发者或小型团队而言,组建并维持这样一个完整的团队往往面临人力成本高、技能覆盖不全等挑战。原创 2025-07-30 06:00:00 · 768 阅读 · 0 评论 -
【SAT问题】有一个0.1的二维表,任意行数组合,进行或运算,达到最多1,得到组合结果,并排序。
我们将问题形式化为SAT问题,并提供初始解决方案。设有一个 (n×mn \times mn×m) 的布尔矩阵 (AAA),其中 (Aij∈01Aij∈01目标是选择最少数量的行索引集合 (S⊆12nS⊆12n),使得对选定行进行逐位或运算后,结果向量 (R⋁i∈SAiR⋁i∈SAi) 满足每列最多有一个1(即 (∑j1mRj≤m∑j1mRj≤m),且 (Rj∈0。原创 2025-07-31 20:00:00 · 742 阅读 · 0 评论 -
提示的镜像迷宫:大型语言模型在反思中的自我超越
在数字时代的浪潮中,大型语言模型(LLM)犹如一艘穿越数据海洋的巨轮,不断进化着人类的智能边界。想象一下,这些模型就像是科幻小说里的“数字大脑”,它们从海量文本中汲取营养,学会预测下一个词、解答谜题,甚至创作诗篇。然而,随着任务越来越复杂,如何让这些“数字大脑”在有限资源下高效适应新挑战,成为了AI研究者的终极追求。原创 2025-07-31 21:43:48 · 482 阅读 · 0 评论 -
记忆的数字迷宫:大型语言模型如何借助MemOS和Neo4j探索知识海洋
2025年,arxiv上涌现了许多关于LLM记忆增强的论文,这些作品不仅深化了理论,还提供了实用框架。以下是我们精选的5-10篇论文的核心内容总结,每篇都聚焦于记忆系统的创新,并与MemOS理念相呼应。我会用表格形式呈现,便于读者一目了然。原创 2025-07-31 22:15:38 · 936 阅读 · 0 评论 -
AI代理的奇幻之旅:敏捷开发中的突破性革命
想象一下,你是一位忙碌的发明家,手里握着一个模糊的idea,却不知如何将其转化为现实中的产品。突然,一群聪明的AI助手如魔法般出现,它们像一支训练有素的探险队,携手引导你穿越开发的丛林。这就是BMAD方法的魅力——一种革命性的敏捷AI驱动开发框架,它不仅仅是工具,更是你的数字伙伴,帮助你征服从软件工程到创意写作的广阔领域。就像一部科幻小说中的主角,你将与这些AI代理一同冒险,探索未知,创造奇迹。在这个故事中,我们将一步步揭开BMAD的面纱,从它的起源到实际应用,让你感受到科技的乐趣与无限可能。🌟。原创 2025-07-29 21:00:00 · 1511 阅读 · 0 评论 -
BMAD-METHOD 与 Kiro Spec 编程深度对比研究
BMAD-METHOD 与 Kiro Spec 编程作为当前 AI 驱动开发领域的两种前沿方法论,它们在核心理念、工作流程、AI 协作模式以及适用场景上均展现出显著的差异。BMAD-METHOD 的核心在于“AI 即团队”,通过模拟一个多角色的敏捷开发团队,在规划与执行分离的双阶段工作流中实现高度结构化和规范化的开发管理。原创 2025-07-30 22:31:23 · 801 阅读 · 0 评论 -
达尔文在数据中心:AI超越蛮力的进化飞跃
GEPA的出现,为我们描绘了一幅AI学习的全新蓝图。在这幅蓝图中,我们不再将AI视为需要用海量数据和无尽试错来“塑造”的粘土,而是将其看作一个能够主动学习、主动反思的“认知实体”。通过将机器执行过程中产生的丰富语言轨迹作为核心学习信号,GEPA成功地将学习效率提升了几个数量级。它证明了,与其让AI在黑暗中摸索一万次,不如给它一盏灯,让它看清自己走过的路。这不仅仅是关于效率的胜利,更是一种理念的胜利。它预示着一个新时代的到来:未来的AI系统将更加。原创 2025-08-02 00:00:00 · 8 阅读 · 0 评论 -
GEPA MCP:基于遗传进化的提示优化架构深度解析
GEPA MCP项目代表了提示优化领域的一个重要进展。通过将遗传进化算法与现代AI模型相结合,它提供了一种高效、自动化的提示优化解决方案。项目的模块化架构和深度集成设计使其既具备强大的功能,又保持了良好的可扩展性。多模型支持:扩展到更多AI模型平台领域专业化:针对特定领域开发专门的优化策略实时优化:实现真正的实时提示优化协同进化:多个AI模型协同进行提示优化总的来说,GEPA MCP不仅是一个实用的工具,更是一种新的提示工程范式,为AI交互的未来发展提供了有价值的参考。原创 2025-08-01 22:00:00 · 141 阅读 · 0 评论 -
ASI-Arch 项目深度研究报告
ASI-Arch 项目代表了人工智能领域,特别是神经架构发现方面的一项重大突破。其核心目标在于解决当前AI研究面临的根本性瓶颈,并推动AI研究范式向更高阶的自主创新转变。该项目由上海交通大学和MiniMax AI的研究团队共同推动,旨在构建一个能够完全自主进行科学研究的AI系统,尤其是在神经网络架构设计这一关键且复杂的领域。ASI-Arch 的出现,标志着AI从辅助研究工具向独立研究主体的转变,其目标是让AI能够像人类科学家一样,独立完成从问题识别、假设生成、实验设计到结果验证的完整科研流程。原创 2025-07-31 22:00:00 · 21 阅读 · 0 评论 -
布尔可满足性问题(SAT)深度研究
布尔可满足性问题(Boolean Satisfiability Problem, SAT)是计算机科学和数理逻辑中的一个核心决策问题。其定义为:对于一个给定的布尔逻辑公式,判断是否存在一组对其变量的真值赋值(即,为每个变量指定真 (True) 或假 (False)),使得该公式的最终计算结果为真。如果存在这样的赋值,则称该布尔公式是可满足的 (satisfiable);否则,称其为不可满足的 (unsatisfiable)。原创 2025-07-31 21:00:00 · 9 阅读 · 0 评论 -
代码Agent中检索增强生成(RAG)的深度研究:核心上下文工程挑战
检索增强生成(Retrieval-Augmented Generation, RAG)系统通过整合外部知识源来增强大型语言模型(LLM)在代码生成等知识密集型任务中的表现。数据准备(索引构建)和运行时(查询处理与生成)。在数据准备阶段,外部知识源(如文档、代码库)被处理成可检索的格式。这通常涉及将文档分割成较小的块(chunking),然后使用嵌入模型(embedding model)将这些文本块转换为向量表示(embeddings),这些向量捕获了文本的语义信息。原创 2025-07-31 12:39:20 · 14 阅读 · 0 评论 -
MiniMax CISPO 算法深度研究
CISPO(Clipped Importance Sampling Policy Optimization)算法是一种由MiniMax 公司提出的新型强化学习策略优化算法。该算法的提出旨在解决传统强化学习算法(如 PPO、GRPO)在训练大型语言模型时遇到的一些固有问题,特别是与token 级别更新和重要性采样相关的稳定性和效率瓶颈。在大型语言模型的强化学习阶段,尤其是在处理长序列和复杂推理任务时,传统方法可能会因为对 token 更新的裁剪而导致关键信息的丢失。原创 2025-07-31 20:00:00 · 24 阅读 · 0 评论 -
迷雾中的建筑师:对 Claude Code Agent 的解剖学分析
在人工智能(AI)的宏伟剧场中,大型语言模型(LLM)曾是舞台上独舞的明星,以其惊人的语言能力博得满堂喝彩。然而,真正的革命正在后台悄然发生:AI 智能体(Agent)的崛起。这些智能体不仅仅是语言模型,它们是能够设定目标、使用工具、与环境交互并解决复杂问题的自主系统。它们承诺将 AI 从一个被动的“问答机”转变为一个主动的“问题解决者”。然而,这些数字大脑的内部运作机制,在很大程度上仍被商业机密和技术复杂性的迷雾所笼罩。原创 2025-07-10 18:01:12 · 1144 阅读 · 0 评论 -
Phidata 中的工具:增强智能代理的能力
如果您需要更多控制,您可以编写自己的 Python 函数并将其作为工具添加到代理中。以下是如何将。原创 2024-12-09 00:00:00 · 962 阅读 · 0 评论 -
旋转嵌入与张量注意力:深度学习的理论边界探秘
张量注意力的核心思想是通过张量运算捕捉更高阶的交互关系。原创 2024-12-26 20:00:00 · 834 阅读 · 0 评论 -
从数据尘埃到智能巅峰:自底向上知识图谱的超级冒险
基于知识图谱的潜在不适当用药预测. https://www.semanticscholar.org/paper/%E5%9F%BA%E4%BA%8E%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E7%9A%84%E6%BD%9C%E5%9C%A8%E4%B8%8D%E9%80%82%E5%BD%93%E7%94%A8%E8%8D%AF%E9%A2%84%E6%B5%8B-Lin-Teng/1bafeb9e759f4b28af79ce968a51c50c3f0e3333。原创 2025-07-30 00:00:00 · 242 阅读 · 0 评论 -
Gemini CLI Code Assist 模块深度解析:企业级AI代码助手的架构设计
工厂模式函数适配器模式:协议转换层策略模式:多种认证策略的统一处理观察者模式:OAuth2事件监听机制模板方法模式:HTTP请求的标准化处理Gemini CLI的Code Assist模块展示了Google在构建企业级AI服务方面的深厚技术积累。它不仅仅是一个功能模块,更是一个完整的企业级AI服务接入框架的参考实现。从架构设计到安全考虑,从性能优化到可扩展性,这个模块体现了现代软件工程的最佳实践。对于希望构建类似企业级AI工具的开发者来说,这个模块提供了宝贵的参考价值。特别值得学习的是其。原创 2025-07-28 00:00:00 · 599 阅读 · 0 评论 -
Qwen3 GSPO 与 DeepSeek-R1 GRPO 算法深度对比分析
GSPO 和 GRPO 是大型语言模型强化学习领域两种重要的算法,它们在设计理念、性能表现和适用场景上各有侧重,但 GSPO 在多个关键方面展现出更优越的综合能力。核心设计理念GRPO的核心创新在于通过组内相对奖励来估计优势函数,从而避免了传统 PPO 中对独立价值网络(Critic)的依赖,显著降低了计算和内存开销。其优化和重要性采样主要在token 级别进行。GSPO则更进一步,将优化和重要性采样的粒度从 token 级别提升至序列级别。原创 2025-07-30 12:21:52 · 854 阅读 · 0 评论 -
防御大型语言模型Prompt攻击的先进方法论
Prompt攻击,也被称为提示词注入攻击,是一种针对大型语言模型(LLM)及各类AI应用的新型安全威胁。其核心在于攻击者通过精心构造的输入(即“提示”或“Prompt”),诱导或“劫持”语言模型的输出,使其产生攻击者期望的内容,而非模型开发者或系统所有者预期的结果。这种攻击并非直接攻击模型本身或其底层基础设施,而是利用了LLM对自然语言指令的敏感性以及其在处理复杂或冲突指令时可能出现的逻辑漏洞。原创 2025-07-27 06:10:56 · 61 阅读 · 0 评论 -
GraphRAG:原理、流程、实战与搭建
是一种先进的AI检索方法,它通过结合知识图谱(Knowledge Graph)和向量搜索(Vector Search)来增强大型语言模型(LLM)的上下文理解、可解释性以及执行多跳推理(multi-hop reasoning)的能力。与传统的RAG系统主要依赖向量相似性搜索不同,GraphRAG将数据存储为节点(实体)和边(关系)的结构化知识图谱,并利用图遍历(graph traversal)来获取相关概念。原创 2025-07-26 21:51:54 · 213 阅读 · 0 评论 -
IMO级数学问题求解的 AI Agent设计
本文深入分析了基于Gemini 2.5 Pro的自验证推理管道方法,该方法在国际数学奥林匹克(IMO)级别问题求解中展现出卓越性能。通过构建一个包含六个关键阶段的迭代流程,系统实现了从初始解生成到最终验证的全过程自动化。原创 2025-07-26 17:20:22 · 183 阅读 · 0 评论 -
探索 Lyra Prompt:AI 提示优化的革命性工具
大家好!今天,我想和大家分享一个最近在 AI 社区中风靡一时的工具——Lyra Prompt。作为一个 meta-prompt(元提示),Lyra Prompt 帮助用户将模糊或粗糙的输入转化为精确、高效的 AI 提示,从而解锁 AI 模型的全部潜力。在这个快速发展的 AI 时代,好的提示工程可以决定输出质量的优劣,而 Lyra Prompt 正是这样一个“神器”。本文将基于最新调研,详尽介绍它的起源、使用方法、优势以及实际应用案例。原创 2025-07-24 22:00:00 · 405 阅读 · 0 评论 -
【IMO 2025算法推理演示】人拿着1根5米长度的竹竿,是否可以通过2米 x 2米的门?
是的,一个人拿着1根5米长的竹竿可以通过2米 × 2米的门。通过将竹竿沿门框的对角线方向(从 ( (0, 0) ) 到 ( (2, 2) ))倾斜,使其在 ( xy )-平面的投影长度小于或等于 ( 2\sqrt{2} \approx 2.828 , \text{米} ),同时在 ( z )-方向上延伸,竹竿可以逐步通过门框而不会被阻挡。要判断一个人拿着1根5米长的竹竿是否可以通过一个2米 × 2米的门,我们需要分析竹竿在通过门时的空间几何约束,并严格遵循问题中的限制条件。我们验证竹竿通过门的可行性。原创 2025-07-25 21:10:55 · 41 阅读 · 0 评论 -
语义的量子革命:从经典到量子语义的架构与设计思想
量子语义让我们重新认识“意义”的本质——它是观察者依赖、上下文驱动、非经典且充满不确定性的。通过量子语义的架构与设计思想,我们可以打造更智能、更灵活、更贴近人类认知的上下文系统,真正拥抱语义的复杂性与多样性。原创 2025-07-23 22:00:00 · 704 阅读 · 0 评论 -
记忆的魔法:解锁AI协作的无限潜能
记忆系统是Claude-Flow的核心,用于存储、检索和同步跨会话的代理数据。它结合了JSON数据库、文件存储和内存缓存,通过批处理优化实现高效并行操作。协调系统则像乐团指挥,确保多个代理在复杂任务中协同工作,动态分配资源并优化执行流程。本文将基于提供的参考文献,详细剖析记忆与协调系统的架构、功能和优化策略,同时通过生动的比喻和例子,让你轻松理解这些技术的奥秘。我们将从记忆系统的核心组件开始,逐步深入到并行处理、批处理优化、协调机制以及实际应用场景,确保内容全面且引人入胜。原创 2025-07-25 00:00:00 · 784 阅读 · 0 评论 -
MCP 开发模板集合:深度解析现代化 AI 工具服务器架构
types/模块化设计:每个模块职责单一,便于维护接口优先:定义清晰的接口,降低耦合依赖注入:便于测试和扩展这个 MCP 开发模板集合不仅仅是一个代码模板,更是一个完整的开发方法论。📦 模块化架构:清晰的代码组织和职责分离🔒 类型安全:TypeScript 提供的编译时保障🧪 测试驱动:完整的测试覆盖确保代码质量⚡ 自动化流程:从开发到部署的无缝自动化📚 文档友好:详细的文档降低学习成本快速创建生产级 MCP 服务器遵循行业最佳实践享受自动化带来的效率提升。原创 2025-07-14 00:00:00 · 1603 阅读 · 0 评论 -
神经场与上下文工程的未来
神经场代表了上下文工程从离散到连续的根本性跃迁。通过拥抱基于场域的思维,我们打开了新的可能性,创造出更加灵活、更加持久、更加符合意义自然涌现规律的上下文系统。正如爱因斯坦所说:"场域是粒子的唯一支配机构。"在人工智能的世界中,我们正在发现:场域可能就是智能的唯一支配机构。从单个原子提示到分子化的少样本学习,从细胞化的记忆系统到器官化的多智能体协作,从神经生物学系统到神经场域——我们的旅程见证了人工智能从机械模仿向生物启发的深刻转变。原创 2025-07-19 19:13:58 · 919 阅读 · 0 评论