RAG学习及相关技术

一、RAG是什么?

Retrieval Augmented Generation(增强检索生成), 首先让我们忘记Retrieval Augmented, 先只谈一下Generation的部分,在RAG中,通常指的是Large Language Model(LLM),它生成文字以回复用户的问题,最有名的LLM是ChatGPT。而这些LLM 都是生成式AI的一种形式。

1、GPT能满足所有场景需求吗?

在我们使用chatGPT或者其他大模型的过程中 我相信很多朋友都会遇到类似的问题,比如:
a.有些回答它会凭空捏造
b.有些特定问题不符合基本逻辑
c.回答的依据,来源 根本不存在
d.对于近期的知识或者新闻完全不了解,导致回答的答案时过时的或者完全错误的

2、是什么造成了以上问题呢?

对于没有持续学习能力的LLM来说,模型在训练后,它的知识就冻结了,但是输入的问题的知识来源时序确实不断变化的,如果模型不能够适应这种变化,就会不断的出现问题,对于专业的人员能够很好的理解这种问题, 但是对于小白用户,可能就会带来很多误导,会觉得LLM非常不靠谱。

3、所以,在使用LLM的过程当中有两个关键的问题还需要去解决:
  • a.回答的答案没有来源,如果我们对LLM的每个回答都要自己去验证正确性,那就完全没有必要使用LLM了,纯靠自己的检索能力了。
  • b.训练数据过时, 大模型的知识都是来源于它的训练集, 对于还没有发生的或者它从来没有见过的数据它是完全无法回答的,但是很多情况下大模型会凭空捏造答案,问题又回到了a.
4、回到最初的问题, 什么是RAG呢? 查询资料再使用大模型生成就是RAG吗?

增强检索生成(RAG)是一种使用后处理的架构解决方案,目的就是为了解决LLM遇到的问题。如果用户想LLM提出问题,LLM能够直接给出准确以及有依据的回答,让用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添财小哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值