Python的线程池之ThreadPoolExecutor

本文介绍了Python中多线程的概念以及线程池的作用,强调了线程池如何优化多线程执行效率,提供了线程池ThreadPoolExecutor的特性及使用方法。针对提交任务过多可能导致的资源消耗问题,探讨了两种限制线程池队列大小的解决方案:一是直接修改ThreadPoolExecutor的内部队列,二是任务分组提交。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python中的多线程

一段程序运行起来的本质就是有线程在负责执行我们的代码;那么多线程即是有多个线程在执行一段程序。

一般CPU计算密集型任务适合多进程,那么IO密集型任务则适合多线程;当然一个进程可拥有多个并行的线程,当中每一个线程,共享当前进程的资源。

提示:那么是不是一味的创建多个线程就能提高程序的效率?非也, 只有合理的的多线程才能发挥多核的优势;于是乎就有了线程池。

Python中的线程池

线程池可以可以解决多个线程的痛点

  • 创建合理的线程数量,重用存在的线程,减少线程创建销毁带来的开销。
  • 可有效的控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。
  • 提供定时执行、定期执行、单线程、并发数控制等功能。

接着看Python主流的线程池ThreadPoolExecutor

线程池ThreadPoolExecutor

ThreadPoolExecutor位于python3标准库的并发包(concurrent.futures)下,特点

  1. 主线程可以获取某一个线程的状态,以及返回值。
  2. 线程同步
  3. 让多线程和多进程的编码接口一致。
  4. 简单粗暴

它的一些API使用:

# 创建一个包含2条线程的线程池
with ThreadPoolExecutor(max_workers=2) as pool:
# 另一种方式
pool = ThreadPoolExecutor(max_workers&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小洛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值