Python中的多线程
一段程序运行起来的本质就是有线程在负责执行我们的代码;那么多线程即是有多个线程在执行一段程序。
一般CPU计算密集型任务适合多进程,那么IO密集型任务则适合多线程;当然一个进程可拥有多个并行的线程,当中每一个线程,共享当前进程的资源。
提示:那么是不是一味的创建多个线程就能提高程序的效率?非也, 只有合理的的多线程才能发挥多核的优势;于是乎就有了线程池。
Python中的线程池
线程池可以可以解决多个线程的痛点
- 创建合理的线程数量,重用存在的线程,减少线程创建销毁带来的开销。
- 可有效的控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。
-
提供定时执行、定期执行、单线程、并发数控制等功能。
接着看Python主流的线程池ThreadPoolExecutor
线程池ThreadPoolExecutor
ThreadPoolExecutor位于python3标准库的并发包(concurrent.futures)下,特点
- 主线程可以获取某一个线程的状态,以及返回值。
- 线程同步
- 让多线程和多进程的编码接口一致。
简单粗暴
它的一些API使用:
# 创建一个包含2条线程的线程池
with ThreadPoolExecutor(max_workers=2) as pool:
# 另一种方式
pool = ThreadPoolExecutor(max_workers&