
机器学习
舌耳
一入江湖岁月催
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
day6 SVM支持向量机
文章目录6.1什么是支持向量机6.2 推导过程6.2.1距离和目标函数6.2.2使用拉格朗日乘子法解SVM6.2.3 SVM求解实例6.3 软间隔6.4 低维不可分或者难分解时6.7 高斯核函数 6.1什么是支持向量机 一个二分类模型,寻找决策边界最宽的一个超平面将数据进行分割 解决问题的步骤: *把所有样本和其对应的分类标记交给算法进行训练 *如果发现线性可分,那么直接找出超平面 *如果发现线性...原创 2019-07-07 21:22:00 · 593 阅读 · 2 评论 -
day3 集成算法与随机森林
3.1 什么是集成算法 目的是让最终的结果越好 Bagging 训练多个分类器然后取平均(并行的训练平行的分类器,比如随机森林) f(x)=1M∑M=1Mfm(x)f(x)=\frac{1}{M}\sum_{M=1}^{M}f_m(x)f(x)=M1∑M=1Mfm(x) Booting 从弱学习器开始强化,通过加权来进行训练 Fm(x)=Fm−1+argminh∑i=1nL(yi,...原创 2019-07-02 17:18:53 · 244 阅读 · 0 评论 -
day1 机器学习基础
1.1什么是机器学习 简单来说:把无序的数据转化为有用的信息,主要任务:分类 回归 正确率达百分之六十以上的准确率都被认为是成功的 1.2关键术语 一些专业术语 特征 事物的属性 训练集 分类好的样本 测试集 用来评估训练的模型 1.3主要任务 分类 回归 监督学习算法 k-近邻算法 线性回归 朴素贝叶斯 局...原创 2019-06-29 15:49:38 · 2762 阅读 · 0 评论 -
day4 泰坦尼克号获救
有些地方没看懂 等看懂再完善吧 先进行数据处理将空数据进行补全 导入训练数据 import pandas from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold titanic = pandas.read_csv("titanic_train.csv") ti...原创 2019-07-05 10:29:32 · 1260 阅读 · 0 评论 -
唐宇迪机器学习笔记目录
day1 初识 day2 决策树 day3 集成算法与随机森林 day4 泰坦尼克号原创 2019-07-05 10:53:09 · 2068 阅读 · 0 评论 -
day2 决策树
2.1原理 什么是决策树 从根节点开始一步步走到叶子节点,所有的数据都最终会落在叶子节点上。可以做分类也可以做回归 由什么组成 根节点:第一个选择点 非叶子节点:中间过程 叶子节点:最终的决策结果 两个阶段 训练阶段 从给定训练集中构造一棵树(从根节点开始选择特征,如何进行特征切分) 测试阶段 根据构造出来的树模型,从上到下走一遍 2.2 如何切分特征 熵:表示随机变量不确定性的度量(...原创 2019-06-30 17:13:42 · 1308 阅读 · 0 评论 -
day5 贝叶斯算法
文章目录5.1什么是贝叶斯公式5.1贝叶斯应用的例子5.2拼写检查器5.3垃圾邮件过滤 5.1什么是贝叶斯公式 贝叶斯公式 P(A∣B)=P(B∣A)P(A)P(B)P_{(A|B)}=\frac {P_{(B|A)}P_{(A)}} {P_{(B)}}P(A∣B)=P(B)P(B∣A)P(A) 他能解决什么问题 正向概率:假设袋子里面有N个白球,M个黑球,你伸手进去摸一把, 摸出黑球...原创 2019-07-06 13:29:44 · 1465 阅读 · 0 评论 -
day5_1 拼写检查器的实现
代码思想很好理解 首先读取并处理文件文件(全部小写),并将其转化成字典的格式(NWORDS)。单词为键 出现的次数为值 通过input输入需要判断的单词,并调用correct 在crrect中,判断四种情: 1.(known)是否是NWORDS中的单词,如不满足到2 2.(...原创 2019-07-06 16:51:30 · 1210 阅读 · 0 评论