欢迎关注我的公众号「DevOps和k8s全栈技术」,进公众号【服务】栏,可以看到技术群,点击即可加入学习交流群。↓↓↓
关注公众号,免费学技术,避免被割哦~
不同模型参数,配置要求如下:
一、理论介绍:
1. Ollama
Ollama 是一个由 Ollama 公司开发的 AI 模型工具。它专注于将大规模语言模型(如 GPT-3 和其他类似模型)进行本地化部署,特别是让这些模型可以在用户自己的硬件上运行,而不依赖于云计算资源。这使得用户可以更好地控制数据和模型的运行,而不必担心将敏感数据上传到外部服务器。
主要特点:
- 私有化部署
:Ollama 允许在本地机器上运行大型语言模型(如 GPT-3、BERT、T5 等),使得企业和个人可以避免数据外泄的风险。
- 支持多种语言模型
:Ollama 支持多种预训练的大型语言模型,能够为用户提供类似 GPT 或 T5 的推理能力。
- 高效性
:通过本地化部署,Ollama 能够在企业的硬件上运行,大大提升了对隐私和数据安全的控制能力。
- 易于集成
:提供简单的 API 接口,可以将其嵌入到现有应用程序或工作流中,简化 AI 模型的集成和管理。
使用场景:
- 隐私保护
:对于数据隐私要求严格的行业(如金融、医疗等),Ollama 提供了一个合适的本地化 AI 解决方案。
- 无需云端依赖
:在无法依赖云服务的环境中(例如离线工作场景),Ollama 能够帮助用户独立运行 AI 模型。
2. DeepSeek
DeepSeek 是一个与深度学习和智能搜索相关的项目,旨在提升人工智能对大规模数据集的处理能力,特别是在自然语言处理(NLP)和大规模文本数据搜索方面。
主要特点:
- 深度学习驱动的搜索
:DeepSeek 使用深度学习技术改进了传统搜索引擎的性能,能够在大量的非结构化文本数据中执行更智能的搜索和推理。
- 语义搜索
:与传统的基于关键字的搜索不同,DeepSeek 利用 NLP 技术进行语义搜索,通过理解上下文和语境,提供更精准的搜索结果。
- 大规模数据处理
:DeepSeek 特别适用于需要处理大规模文本数据的场景,比如新闻网站、大型电商平台或研究机构的文献库。
- 自学习能力
:DeepSeek 系统通常能够根据用户的行为和反馈进行自我调整,从而不断优化搜索和推荐效果。
使用场景:
- 企业搜索系统
:DeepSeek 可以应用于企业内部搜索系统,帮助用户在海量文档、知识库中快速找到所需信息。
- 推荐系统
:通过 DeepSeek 的智能语义搜索能力,可以应用于电商、社交媒体和内容平台的推荐系统,提供更符合用户兴趣的结果。
- 学术研究
:在需要处理大量科研文献的领域,DeepSeek 能够为研究人员提供更加精确和高效的文献搜索和分析工具。
总结:
- Ollama
主要集中在本地化部署大型语言模型,帮助用户实现无需云端的 AI 模型部署,关注隐私保护和本地化计算。
- DeepSeek
主要侧重于利用深度学习技术改进搜索和信息检索,通过语义理解优化传统的搜索引擎,特别适用于大规模数据集的处理和智能推荐。
这两个工具都在各自领域中推动了 AI 技术的应用和发展,Ollama 更专注于本地化的 AI 模型应用,而 DeepSeek 更注重语义搜索和智能信息检索。
二、实操练习:
1. 前提准备
硬件要求
由于部署的模型是大规模的671B参数模型,需要高性能计算资源。建议的硬件配置为:
计算资源:
至少 32 vCPU,推荐 64 vCPU。
至少 128 GB 内存,推荐 256 GB 内存。
每个节点最好配备 1TB SSD 或以上存储。