Catalan numbers upper bound

文章探讨了Catalan数在计算具有n个节点的二叉树数量中的应用,提供了Catalan数的公式以及一个基于中央二项式系数的简单上界。对于大型n值,使用4^n作为估算值有助于快速计算,尽管这不是最优的,但在处理组合问题中的不等式和概率界限时非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


The Catalan numbers give a direct count of the number of distinct binary trees with ( n ) nodes. The ( n )-th Catalan number, denoted as ( C_n ), is given by the formula:

Cn=1n+1(2nn)=(2n)!(n+1)!n! C_n = \frac{1}{n+1}\binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} Cn=n+11(n2n)=(n+1)!n!(2n)!

This sequence starts with (C0=1),(C1=1),(C2=2),(C3=5)( C_0 = 1 ), ( C_1 = 1 ), ( C_2 = 2 ), ( C_3 = 5 )(C0=1),(C1=1),(C2=2),(C3=5), and so on.

To provide a bound on the number of binary trees with ( n ) nodes using the Catalan numbers, you can use the explicit formula above. However, for large ( n ), it’s often useful to have an upper bound that is easier to calculate. One such bound is derived from the central binomial coefficient and uses the fact that ( 4^n ) is an upper bound for ( C_n ):

Cn=1n+1(2nn)<4nn+1 C_n = \frac{1}{n+1}\binom{2n}{n} < \frac{4^n}{n+1} Cn=n+11(n2n)<n+14n

So, for large ( n ), you can say that the number of binary trees with ( n ) nodes is less than (4nn+1)( \frac{4^n}{n+1} )(n+14n), and since (4nn+1<4n)( \frac{4^n}{n+1} < 4^n )(n+14n<4n) for all (n≥1)( n \geq 1 )(n1), it’s common to use (4n)( 4^n )(4n) as a simpler upper bound.

This bound is not tight, particularly for large ( n ), but it’s very useful when you need a quick estimate that is easy to compute, especially when working with inequalities and probabilistic bounds in combinatorial contexts, such as analyzing the size of structures within the ORAM framework as in your original question.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值